
1

Security Audit Report

Hatom liquid-staking (2)
MultiversX smart contract

by
on October 15, 2025

2

Table of Contents

Disclaimer 3

Terminology 3

Objective 4

Audit Summary 5

Inherent Risks 6

Code Issues & Recommendations 8

C3: Users might be unable to undelegate the last 2 EGLD remaining in a

provider

8

C4: Fee for instantaneous undelegations can be too small 11

C9: SEGLD supply can be very small compared to pending rewards and lead

to failures at deposits or losses at withdrawals

13

Test Issues & Recommendations 15

3

Disclaimer
The report makes no statements or warranties, either expressed or implied,

regarding the security of the code, the information herein or its usage. It also

cannot be considered as a sufficient assessment regarding the utility, safety

and bugfree status of the code, or any other statements.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

Terminology
Code: The code with which users interact.

Inherent risk: A risk for users that comes from a behavior inherent to the

code's design.

Inherent risks only represent the risks inherent to the code's design, which are

a subset of all the possible risks. No inherent risk doesn’t mean no risk. It only

means that no risk inherent to the code's design has been identified. Other kind

of risks could still be present. For example, the issues not fixed incur risks for

the users, or the upgradability of the code might also incur risks for the users.

Issue: A behavior unexpected by the users or by the project, or a practice that

increases the chances of unexpected behaviors to appear.

Critical issue: An issue intolerable for the users or the project, that must be

addressed.

Major issue: An issue undesirable for the users or the project, that we strongly

recommend to address.

Medium issue: An issue uncomfortable for the users or the project, that we

recommend to address.

Minor issue: An issue imperceptible for the users or the project, that we advise

to address for the overall project security.

4

Objective
Our objective is to share everything we have found that would help assessing

and improving the safety of the code:

1. The inherent risks of the code, labelled R1, R2, etc.

2. The issues in the code, labelled C1, C2, etc.

3. The issues in the testing of the code, labelled T1, T2, etc.

4. The issues in the other parts related to the code, labelled O1, O2, etc.

5. The recommendations to address each issue.

5

Audit Summary

Initial scope

Repository: https://github.com/HatomProtocol/hatom-liquid-staking

Commit: 6818e1ea5284d699a1a1dd9a3449de04f88d2df4
MultiversX smart contract path: ./liquid-staking/

Final scope

Repository: https://github.com/HatomProtocol/hatom-liquid-staking

Commit: e367ad690f0dd0ad84068227ed8a9e4e89e3002c
MultiversX smart contract path: ./liquid-staking/

2 inherent risks in the final scope

3 issues in the final scope

12 issues reported in the initial scope and 3 remaining in the final scope:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 0 0 0 0 0 0

Major 2 0 0 0 0 0

Medium 7 1 0 3 0 0

Minor 2 0 0 0 0 0

https://github.com/HatomProtocol/hatom-liquid-staking
https://github.com/HatomProtocol/hatom-liquid-staking

6

Inherent Risks

R1: Users might make smaller profits than if they delegated directly

to the provider of their choice.

This is because:

1) A protocol fee is applied on the rewards generated from staked EGLD.

2) Users’ EGLD might not all be delegated in the providers generating the

highest profits:

Hatom admins decide which providers are allowed for delegations.

The selection of the provider where users’ EGLD are delegated depends on

off-chain data about providers provided by an oracle, therefore these data

might be inaccurate and/or not favor the providers that would lead to

highest profits.

The algorithm selecting the provider where users’ EGLD are delegated /

undelegated might not select the providers which generate the highest /

lowest profits.

Only admins can execute the algorithm selecting the provider where users’

EGLD are delegated. Therefore if admins are inactive, these EGLD would not

generate any profits to users.

The admins are allowed to undelegate EGLD from a provider of their choice,

in order to re-delegate these EGLD afterwards in another provider, chosen

by the selection algorithm. Until they are re-delegated, which takes at least

10 days to pass the unbonding period, these EGLD would not generate any

profits to users.

R2: Users might not be able to withdraw if their SEGLD are worth

less than 1 EGLD.

7

This is because the undelegation endpoint of the Liquid Staking smart contract

does not accept SEGLD amounts worth less than 1 EGLD.

For example, this could happen when:

The user deposits less than 1 EGLD.

Or the user transfers parts of his SEGLD and his remaining SEGLD are worth

less than 1 EGLD.

8

Code Issues & Recommendations

Since the code is not open-source, only the remaining issues are published.

C3: Users might be unable to undelegate the last 2 EGLD remaining

in a provider

Severity: Medium Status: Won't fix

Description

Current behavior: A user might be unable to undelegate the last 2 EGLD

remaining in a provider. This is because undelegating from the provider is

forbidden if it would leave the provider with a non-zero amount smaller than 1

EGLD.

Consequently, if the above situation occurs for all whitelisted providers, i.e. the

user’s undelegation would leave any of these providers with a non-zero

amount smaller than 1 EGLD, then the undelegate endpoint would fail to

select a provider, and the user can’t withdraw his funds.

For example, if there is a single user whose SEGLD are worth 1.99 EGLD, and

the Liquid Staking smart contract currently has 1.999 EGLD all delegated in a

single provider, then the user can’t undelegate because:

It is impossible to undelegate less than 1 EGLD from the provider,

It is impossible to undelegate any amount between 1 EGLD and 1.99 EGLD: it

would leave the provider with a non-zero amount of EGLD smaller than 1.

Expected behavior: Even when a provider has less than 2 EGLD left, users

should be able to undelegate from it, if their SEGLD is worth at least 1 EGLD.

This is the behavior they would expect based on their experience with direct

staking: a user is always able to fully undelegate his EGLD from a provider, and

when he does so, he must be undelegating at least 1 EGLD, because it is a

constraint of the provider’s smart contract that the amount of EGLD delegated

by any user is always either 0 or at least 1 EGLD.

Worst consequence: The Liquid Staking smart contract has 1.999 EGLD

delegated in all whitelisted providers, i.e. 31 providers at the time of this audit.

9

Meanwhile, there are 31 SEGLD holders, each of which has an SEGLD amount

worth 1.99 EGLD. Therefore, none of these users can withdraw, which means

that a total of 61.69 EGLD can’t be withdrawn.

Example: A precise scenario where the issue occurs is provided in the "Test 0"

of this reproduction. In this scenario, a user deposits EGLD in the Liquid

Staking smart contract, which are delegated to a single provider. Rewards are

then claimed, which leads to rounding errors in the SEGLD:EGLD conversion

rate. In turn, when the user attempts to undelegate, the EGLD value of his

SEGLD is slightly underestimating the amount of EGLD delegated in the

provider, and it is therefore impossible to undelegate these EGLD.

Recommendation

At a high-level, we recommend that the admin deposits 1 EGLD in a whitelisted

provider, before users are allowed to delegate their EGLD in this provider.

In practice, for each provider, we introduce a new boolean storage

initial_egld_delegated , and in the selection algorithm for delegation, we

accept the provider only if initial_egld_delegated is true . In order to set

initial_egld_delegated to true , the admin would call an admin endpoint

delegate_initial_egld that takes a provider address as argument and

proceeds as follows:

It requires that 1 EGLD is received and that initial_egld_delegated is

false .

It delegates the 1 EGLD to the provider.

In the callback, if the asynchronous call succeeded, it sets

initial_egld_delegated to true (we don't do any other updates, e.g.

we don't increase the storages cash , shares , total_delegated and

don't mint any SEGLD for the caller). Otherwise, if the asynchronous call

failed, we send back the EGLD.

Moreover, we would remove the following lines from

is_valid_undelegation_contract_relaxed :

https://github.com/HatomProtocol/hatom-liquid-staking-against-mainnet

10

let min_egld_to_delegate = BigUint::from(MIN_DELEGATION_AMOUNT);
let amount_left = &contract_data.total_delegated - egld_amount;
if amount_left != BigUint::zero()
 && amount_left < min_egld_to_delegate {
 return false;
}

Finally, after the Hatom team will have performed the initial delegation in each

provider, the corresponding transactions should be shared with the auditor.

11

C4: Fee for instantaneous undelegations can be too small

Severity: Medium Status: Won't fix

Location

liquid-staking/src/governance.rs
set_instantaneous_fee

Description

Current behavior: The owner can choose any value for the fee

instantaneous_fee paid by users during instantaneous undelegations.

However if it is too small, e.g. 0%, an attacker could steal staking rewards from

users who actively delegate their EGLD, by delegating EGLD before rewards

are claimed, and exiting straight after by calling instantaneous_undelegate .

Indeed, if the profit made from rewards is greater than the fee, the attacker

would be incentivized to perform the above steps, and would then have earned

EGLD rewards he did not deserve, which should have been distributed to other

users.

Expected behavior: The instantaneous fee should be sufficiently big such that

the above quick enter-and-withdraw attack would make the attacker lose

funds rather than making profits.

Worst consequence: If instantaneous_fee is 0%, an attacker could steal

staking rewards from other users. At each epoch, he would delegate EGLD,

trigger himself the claiming of rewards from every providers (as the endpoint

for claiming rewards is public), and exiting straight after by calling

instantaneous_undelegate .

Recommendation

We recommend adding a check in the endpoint set_instantaneous_fee to

ensure that the fee is at least 0.03%, i.e. no smaller than a constant

MIN_INSTANTANEOUS_FEE = 3 .

The proposed minimal fee of 0.03% has been chosen conservatively to ensure

that a quick enter-and-withdraw attack would make the attacker lose funds

rather than making profits. Indeed, assuming a 10% APR from staking (which is

12

higher than the current APR), the rewards that can be claimed at each epoch

generate a profit smaller than 0.03%.

Finally, in instantaneous_undelegate , in case the open mode is inactive, we

recommend checking that instantaneous_fee is set, i.e. that it is non-zero.

13

C9: SEGLD supply can be very small compared to pending rewards

and lead to failures at deposits or losses at withdrawals

Severity: Medium Status: Won't fix

Description

Current behavior: The total supply of SEGLD ls_token_supply can be very

small, e.g. 0 or close to 0, while there is a significant amount of pending EGLD

rewards to be claimed. However, after rewards are claimed and re-delegated,

thereby increasing the EGLD reserve cash_reserve , the conversion rate

between SEGLD and EGLD would explode.

The consequence of a huge SEGLD:EGLD rate is that it could prevent future

users from depositing EGLD amounts below a high threshold (e.g. 100 EGLD),

and also induce significant rounding errors when they undelegate, leading to

losses of funds, as shown in the example below.

Expected behavior: The conversion rate between SEGLD and EGLD should

handle the case where most users have withdrawn their SEGLD but there are

still significant amounts of rewards to be claimed and re-delegated, ensuring

that even in this case users can deposit 1 EGLD and don’t lose non-negligible

amounts of EGLD when withdrawing.

Worst consequence: If the total supply of SEGLD becomes very small, e.g.

close to 0, while there is a significant amount of pending EGLD rewards to be

claimed, an attacker could claim and re-delegate the rewards, in order to

inflate the SEGLD:EGLD rate and steal the funds of subsequent users because

of rounding errors. This is exemplified below.

Example: After most users have withdrawn their SEGLD, there only remains 1

SEGLD owned by an attacker Alice, while there are 100 EGLD (10^20 atoms of

EGLD) rewards pending to be claimed. Alice then claims and re-delegates the

rewards, therefore cash_reserve = 10^20 and ls_token_supply = 1 , and 1

atom of SEGLD is now worth 10^20 atoms of EGLD. There are then two types

of undesired consequences:

Impractical Deposits: From now on, users can't delegate less than 100

EGLD, as otherwise delegate would fail when trying to mint 0 SEGLD.

New users lose funds: A user Bob deposits 190 EGLD and receives only

190 * 1 / 100 = 1 SEGLD due to rounding errors. A user Eve deposits

14

280 EGLD, and receives only 280 * 2 / 290 = 1 SEGLD. A user Carol

deposits 370 EGLD, and receives only 370 * 3 / 570 = 1 SEGLD. Alice

then withdraws her 1 SEGLD and receives 940 / 4 = 235 EGLD, i.e. she

has stolen 135 EGLD. Then, the other users withdraw: Bob earns 45 EGLD,

while Eve loses 45 EGLD and Carol loses 135 EGLD.

Recommendation

At a high-level, we suggest that before the state can be activated, the Hatom

admin should perform an initial deposit of 1 EGLD and that keeps the

corresponding SEGLD in the smart contract instead of sending it back to the

caller. This will ensure that even after all users withdraw and if there are

pending rewards to be compounded, the conversion between SEGLD and

EGLD will still be reliable.

In more details, we introduce a boolean storage variable

initial_deposit_done to track whether the initial deposit has been made,

and in set_state_active , we require that initial_deposit_done is true.

Then, we have an admin endpoint initial_deposit that requires 1 EGLD to

be sent, checks that initial_deposit_done is false, and sets

initial_deposit_done to true.

15

Test Issues & Recommendations

Since the code is not open-source, only the remaining issues are published.

