
​MultiversX xExchange Fees Collector (2)​
​MultiversX smart contract - Security audit by Arda​

​Repository:​​https://github.com/multiversx/mx-exchange-sc/​
​Smart contract path:​​energy-integration/fees-collector​
​Initial commit:​​dbd9093bd1d9dcd8a85a7ef88fe283b6636fafe8​
​Final commit:​​36e8e8dfc4101ccf9e855c0a8d44971fea1b2c31​

​Issues​

​1.​ ​Available tokens highly overestimated in​
​get_token_available_amount and prevent some users from​
​claiming​

​Status​ Solved

​Severity​ Critical

​Commit (if not initial)​

​Location file (optional)​

​Additional note (optional)​

​Description​

​The method​​get_token_available_amount​​is supposed​​to compute the amount of tokens in​
​the contract which are not allocated as rewards for past 4 weeks as well as the current week:​
​current_week - 4, current_week - 3, …, current_week​​.​

​For this, it subtracts the amounts allocated for these weeks to the balance of the smart contract.​
​However, it wrongly computes the amount allocated for these weeks. Indeed, it considers that​
​the amount allocated to a week is in the storage​​accumulated_fees(week)​​,​​although it should​
​be the sum of​​accumulated_fees(week)​​and the amount​​of tokens in the array​
​total_rewards_for_week(week)​​.​

​Namely, each time a week passes, at the 1st interaction in the next week (​​week + 1)​​, the​
​method​​collect_and_get_rewards_for_week​​clears​​accumulated_fees(week)​​and adds​
​the reward token to an array​​total_rewards_for_week(week)​​. Therefore, the allocated​

​None​

​rewards for that week are in the array​​total_rewards_for_week(week)​​, not in​
​accumulated_fees(week)​​anymore. So at all times, the​​amount of reward token allocated for​
​a week is the sum of​​accumulated_fees(week)​​and of​​the amount of that token in​
​total_rewards_for_week(week)​​.​

​Consequence:​​In practice, there is at least 1 user​​interaction per week with the Fees Collector,​
​therefore rewards allocated for weeks​​current_week​​- 4, …, current_week - 1​​would be​
​in the array​​total_rewards_for_week​​, not in​​accumulated_fees.​​In turn, the method,​
​get_token_available_amount​​does not subtract all allocated​​rewards for these last 4 weeks,​
​and thus it overestimates the available rewards.​

​The endpoints​​swap_token_to_base_token​​and​​redistribute_rewards​​which call this​
​method would therefore allocate too many rewards to the current week.​

​This would make​​users claim too many rewards, thereby​​preventing some other users to​
​claim their rewards​​once the smart contract balance​​will be empty. This would be​​an​
​irreversible problem since rewards would have been claimed already​​(hence withdrawn​
​from the contract), and​​this issue would materialize​​on mainnet as soon as the contract is​
​upgraded​​.​

​Here is a unit test that reproduces the issue.​

​Unit test issue_available_amount_computation​

​#[test]​
​fn​​issue_available_amount_computation()​​{​

​let​​rust_zero​​=​​rust_biguint!(0);​
​let​​mut​​fc_setup​​=​

​FeesCollectorSetup::new(fees_collector::contract_obj,​
​energy_factory::contract_obj);​

​let​​mut​​router_setup​​=​​RouterSetup::new(​
​fc_setup.b_mock.clone(),​
​router::contract_obj,​
​pair::contract_obj,​

​);​
​//​​Setup​​router​​pairs​​and​​liquidity​
​router_setup.add_liquidity();​

​//​​Create​​users​​that​​will​​claim​​rewards​
​let​​first_user​​=​

​fc_setup.b_mock.borrow_mut().create_user_account(&rust_zero);​

​let​​second_user​​=​
​fc_setup.b_mock.borrow_mut().create_user_account(&rust_zero);​

​fc_setup.set_energy(&first_user,​​10,​​5_000);​
​fc_setup.set_energy(&second_user,​​10,​​5_000);​

​//​​Setup​​router​​and​​add​​all​​tokens​​to​​reward_tokens​​list​
​let​​router_address​​=​​router_setup.router_wrapper.address_ref().clone();​
​fc_setup​

​.b_mock​
​.borrow_mut()​
​.execute_tx(​

​&fc_setup.owner_address,​
​&fc_setup.fc_wrapper,​
​&rust_zero,​
​|sc|​​{​

​sc.set_router_address(managed_address!(&router_address));​

​//​​Only​​add​​the​​extra​​tokens,​​as​​BASE_ASSET_TOKEN_ID​​was​​added​
​at​​deployment​

​let​​mut​​tokens​​=​​MultiValueEncoded::new();​
​tokens.push(managed_token_id!(USDC_TOKEN_ID));​
​sc.add_reward_tokens(tokens);​

​},​
​)​
​.assert_ok();​

​//​​Go​​to​​week​​4​​otherwise​​get_token_available_amount​​always​​returns​​0​
​fc_setup.advance_week();​​//​​current_week​​=​​2​
​fc_setup.advance_week();​​//​​current_week​​=​​3​
​fc_setup.advance_week();​​//​​current_week​​=​​4​

​//​​Register​​users​​for​​rewards​​in​​week​​4​
​fc_setup.claim(&first_user).assert_ok();​
​fc_setup.claim(&second_user).assert_ok();​

​let​​usdc_token_weekly_amount​​=​​500u64;​
​let​​current_week​​=​​fc_setup.get_current_week();​
​fc_setup.simulate_increase_accumulated_fees(​

​current_week,​
​USDC_TOKEN_ID,​
​usdc_token_weekly_amount,​

​);​

​fc_setup.advance_week();​​//​​current_week​​=​​5​
​fc_setup.claim(&first_user).assert_ok();​

​let​​wegld_mex_pair_addr​​=​
​router_setup.wegld_mex_pair_wrapper.address_ref().clone();​

​let​​wegld_usdc_pair_addr​​=​
​router_setup.wegld_usdc_pair_wrapper.address_ref().clone();​

​fc_setup​
​.b_mock​
​.borrow_mut()​
​.execute_tx(​

​&fc_setup.owner_address,​
​&fc_setup.fc_wrapper,​
​&rust_zero,​
​|sc|​​{​

​let​​mut​​swap_operations​​=​​MultiValueEncoded::new();​
​swap_operations.push(​

​(​
​managed_address!(&wegld_usdc_pair_addr),​
​managed_buffer!(SWAP_TOKENS_FIXED_INPUT_FUNC_NAME),​
​managed_token_id!(WEGLD_TOKEN_ID),​
​managed_biguint!(1),​

​)​
​.into(),​

​);​
​swap_operations.push(​

​(​
​managed_address!(&wegld_mex_pair_addr),​
​managed_buffer!(SWAP_TOKENS_FIXED_INPUT_FUNC_NAME),​
​managed_token_id!(BASE_ASSET_TOKEN_ID),​
​managed_biguint!(1),​

​)​
​.into(),​

​);​

​sc.swap_token_to_base_token(managed_token_id!(USDC_TOKEN_ID),​
​swap_operations);​

​},​
​)​
​.assert_ok();​

​//​​ISSUE:​​THE​​USER​​CAN'T​​CLAIM​​HIS​​REWARDS​​BECAUSE​​NO​​USDC​​LEFT​​IN​​THE​
​CONTRACT​

​fc_setup.claim(&second_user).assert_error(10,​​"insufficient​​funds");​

​}​

​Recommendation​
​In the method​​get_token_available_amount​​, we recommend​​computing correctly the​
​amounts of rewards allocated to past weeks​​current_week​​- 4, …, current_week,​​i.e.​ ​as​
​the sum of tokens found in​​accumulated_fees(week)​​and in​
​total_rewards_for_week(week)​​.​

​Moreover, we would fix the test​​redistribute_rewards_test​​so that it correctly computes the​
​amount of rewards that should be redistributed.​

​2.​ ​Anyone can send XMEX to deposit_swap_fees to be​
​distributed as rewards, and the energy of that XMEX will be​
​counted twice​

​Status​ Solved

​Severity​ Major

​Commit (if not initial)​

​Location file (optional)​

​Additional note (optional)​

​Description​

​The endpoint​​deposit_swap_fees​​is now open for anyone​​to send any token. However, if​
​XMEX is sent (which is possible since the Fees Collector has transfer role for XMEX), then the​
​energy of this XMEX is not deducted from the sender’s energy, but this energy will be added to​
​the energy of the users who claim it.​

​As a result, the total energy of all users will be inflated, and will not correspond to the XMEX in​
​circulation.​

​This will make it much harder for the xExchange team when debugging problems to make​
​energy computations and make them match with the XMEX in circulation.​

​Example:​​All users send their XMEX to the Fees Collector,​​and so their total energy after​
​claiming the XMEX back as rewards will be 2x bigger than it should. If they repeat this​
​operation, their energy would be 3x bigger than it should, and so on.​

​Recommendation​
​In the endpoint​​deposit_swap_fees​​, if the received​​token is XMEX, we recommend verifying​
​that the caller is the​​Token Unstake​​smart contract​​(or a whitelisted address), as this is the only​
​address supposed to send XMEX to the Fees Collector for rewards distribution.​

​If this solution does not fit with the team, we suggest reaching out to the auditor.​

​3.​ ​Available tokens are underestimated if redistribution is not​
​performed 1st in a week (i.e. before users claim)​

​Status​ Solved

​Severity​ Medium

​Commit (if not initial)​

​Location file (optional)​

​Additional note (optional)​

​Description​

​The method​​get_token_available_amount​​is supposed​​to compute the amount of tokens in​
​the contract which are not allocated as rewards for past 4 weeks as well as the current week:​
​current_week - 4, current_week - 3, …, current_week​​.​

​For this, it subtracts the amounts allocated for these weeks to the balance of the smart contract.​
​However, if some users already claimed rewards for these past weeks before the method is​
​called, then these rewards would have been withdrawn from the contract, making the SC​
​balance smaller, hence resulting in an underestimated amount of available rewards to​
​redistribute.​

​Consequences:​​The amount of rewards to redistribute​​or swap to MEX would be​
​underestimated, making users earn less than they should.​

​Example:​​Alice is the only participant in the Fees​​Collector.​
​-​ ​At week 1, 500 MEX are allocated as rewards.​
​-​ ​At week 5, 500 MEX are allocated as rewards.​

​None​

​-​ ​At week 6, Alice claims, so she earns 500 MEX (since she can’t claim for week 1).​
​-​ ​At week 6, MEX rewards are redistributed: since the smart contract balance is 500,​

​get_token_available_amount​​returns​ ​500 - 500 = 0.​
​Therefore, no rewards were redistributed although 500 MEX should have been redistributed.​

​Recommendation​

​We recommend introducing a storage that stores the total amount of rewards already claimed​
​by users for a given week.​

​fn rewards_claimed_for_week(token_id: EsdtTokenIdentifier, week: Week)​
​-> SingleValueMapper<BigUint>;​

​It is increased each time a user claims rewards, for each week of claimed rewards, and in​
​get_token_available_amount,​​the rewards claimed in​​the last 4 weeks are added to the​
​smart contract balance.​

​As a result, after the upgrade is done:​
​-​ ​For the first 4 weeks,​​get_token_available_amount​​would underestimate the​

​non-MEX tokens that can be swapped to MEX, because​​rewards_claimed_for_week​
​would be 0 for the 4 weeks preceding the upgrade, resulting in an overestimation of the​
​unclaimed rewards for these weeks. However once 4 weeks will pass, the​
​underestimation would disappear and rewards would be swappable to MEX​

​-​ ​From week 5 and onwards,​​get_token_available_amount​​would return the exact​
​amount of non-claimable rewards.​

​Finally, we recommend adding a unit test showing that the right amount of rewards is being​
​redistributed even if some users claim before the redistribution occurs.​

​4.​ ​MEX and XMEX can be removed from the list of claimable​
​tokens​

​Status​ Solved

​Severity​ Medium

​Commit (if not initial)​

​Location file (optional)​

​None​

​Additional note (optional)​

​Description​
​Through the endpoint​​remove_reward_tokens​​, the admin​​can remove MEX and XMEX from​
​the list​​reward_tokens​​. From then on, this would prevent​​users from claiming MEX and XMEX​
​rewards.​

​However, it is expected that users should always be able to claim these tokens.​

​Recommendation​
​In the endpoint​​remove_reward_tokens​​, we suggest verifying​​that the tokens being removed​
​from the list​​reward_tokens​​are distinct from MEX​​and XMEX.​

​fn remove_reward_tokens(token_ids: MultiValueEncoded<TokenIdentifier>) {​
​let locked_token_id = self.get_locked_token_id();​
​let base_token_id = self.get_base_token_id();​
​for token_id in token_ids {​

​require!(token_id != locked_token_id && token_id != base_token_id);​
​}​

​...​
​}​

​5.​ ​Removing a reward token can make some rewards​
​unclaimable for four weeks​

​Status​ Solved

​Severity​ Medium

​Commit (if not initial)​

​Location file (optional)​

​Additional note (optional)​

​Description​

​When the admin deletes a token from the list​​reward_tokens​​, the tokens which were deposited​
​so far in the current week won’t be swappable to MEX for the next 4 weeks, and in turn users​
​won’t be able to claim these rewards for the next 4 weeks.​

​This is because, once a token is removed from​​reward_tokens​​,​​it is no longer being moved at​
​the 1st interaction of the next week in​​collect_rewards_for_week​​from the storage​
​accumulated_fees​​to the storage​​total_rewards_for_week​​.​​Indeed, this method only iterates​
​over the list​​reward_tokens.​​Consequently:​

​-​ ​Users can’t claim these rewards, because they can claim only rewards recorded in​
​total_rewards_for_week​​.​

​-​ ​These tokens can’t be swapped for MEX for 4 weeks, because during these 4 weeks​
​these tokens won’t be considered as available for swapping as they are present in the​
​storage​​accumulated_fees.​

​Recommendation​
​In the endpoint​​remove_reward_tokens​​, we suggest clearing​​the storage​​accumulated_fees​
​for the current week. This ensures that the tokens deposited for the current week can​
​immediately be swapped to MEX and claimed by users.​

​6.​ ​Deleting locked_token_id from code without deleting storage​
​"lockedTokenId" increases future risk of backward​
​compatibility​

​Status​ Solved

​Severity​ Medium

​Commit (if not initial)​

​Location file (optional)​

​Additional note (optional)​

​Description​

​The storage function​​locked_token_id​​has been deleted​​from the code, however the​
​underlying storage​​"lockedTokenId"​​will still be present​​on mainnet. Therefore, if in the future, a​
​storage is introduced with a key sharing a common prefix with​​"lockedTokenId"​​, this might cause​
​backward compatibility issues.​

​Recommendation​
​In the​​upgrade​​endpoint, we recommend deleting the storage​​"lockedTokenId"​​, as already done​
​for all other storages which are removed from the code.​

​7.​ ​List “reward_tokens” could theoretically be too big and make​
​claims fail​

​Status​ Solved

​Severity​ Medium

​Commit (if not initial)​

​Location file (optional)​

​Additional note​
​(optional)​ ​Sub-issue of a previously raised issue, now easily solvable.​

​Description​

​At the 1st user interaction of each week, the method​​collect_rewards_for_week​​is called,​
​which iterates over the entire list​​reward_tokens​​.​​In theory, this list could be arbitrarily big, and​
​if too big it would make the transaction exceed limits of gas or built-in functions’ calls.​

​In practice, this should never occur since​​reward_tokens​​is not expected to grow: it should be​
​kept to the tokens currently whitelisted on mainnet (around 10 tokens), and might be reduced to​
​contain only MEX and XMEX in the future. Still, nothing prevents the problem from happening in​
​theory, e.g. if later in time some new tokens are added in the list​​reward_tokens​​.​

​Recommendation​
​As detailed in another issue of this report, we can simply delete the endpoint​
​add_reward_tokens​​, which resolves this issue.​

​Alternatively, if another approach is preferred: in the admin endpoint​​add_reward_tokens​​, we​
​can verify that​​reward_tokens​​does not exceed a maximum​​size​​MAX_REWARD_TOKENS​​of 20​
​tokens.​

​8.​ ​Can’t swap tokens to MEX for first 4 weeks of Fees Collector​

​Status​ Solved

​None​

​None​

​Severity​ Medium

​Commit (if not initial)​

​Location file (optional)​

​Additional note (optional)​

​Description​

​The endpoint​​swap_token_to_base_token​​that swaps non-MEX​​tokens to MEX so that users​
​can claim, computes the amount of non-MEX tokens to swap thanks to the method​
​get_token_available_amount.​

​However, the method​​get_token_available_amount​​returns​​0 if the current week is not at​
​least 5.​

​if​​current_week​​<​​USER_MAX_CLAIM_WEEK​​{​ ​return​​BigUint::zero();​​}​

​This means that if a new Fees Collector is deployed and swap fees are deposited in tokens like​
​USDC, EGLD and others, then these tokens can’t be swapped to MEX during the first 4 weeks,​
​hence users can’t earn rewards from swap fees during the first 4 weeks.​

​Recommendation​
​In the method​​get_token_available_amount​​, we recommend​​not returning 0 by default for​
​weeks smaller than 5, and rather properly computing the oldest week​​start_week​​from which​
​allocated rewards should not be considered available.​

​let​​start_week​​=​
​if current_week >= USER_MAX_CLAIM_WEEKS {​

​current_week​​- USER_MAX_CLAIM_WEEKS​
​} else {​

​0​
​}​

​9.​ ​Unnecessary endpoint “add_reward_tokens”​

​Status​ Solved

​Severity​ Minor

​Commit (if not initial)​

​Location file (optional)​

​Additional note (optional)​

​Description​

​The endpoint​​add_reward_tokens​​is unnecessary because​​it is not planned to ever add any​
​new reward tokens. Namely, 6 weeks after the upgrade, all reward tokens will be removed​
​except MEX / XMEX.​

​Recommendation​
​We recommend deleting the endpoint​​add_reward_tokens​​.​

​Unresolved past issues from previous audits​
​Disclaimer​​:​​Below we list the links to non-resolved​​issues from previous audit reports, that the​
​team decided not to solve at that time. Therefore, if the team now wants to solve some of these​
​issues, we suggest reaching out to the auditor, since some recommendations might need to be​
​modified to be backward compatible.​

​10.​ ​Rewards can’t be claimed for a past week without user​
​interaction​

​Status​ Not Solved

​Severity​ Medium

​Commit (if not initial)​

​Location file (optional)​

​Additional note (optional)​ ​Issue raised in a previous review.​

​None​

​Note: Solving the issue for XMEX would be relatively easy. Namely, in​
​accumulate_additional_locked_tokens​​, we could compute​
​new_tokens_amount​​as:​

​let missed_weeks = if last_update_week == 0 { 1 } else {​
​current_week - last_update_week };​
​let new_tokens_amount = amount_per_epoch​​*​​epochs_in_week​​*​
​missed_weeks;​

​11.​ ​Typo opt_existing_claim_progres, should be​
​opt_existing_claim_progress​

​Status​ won't solve

​Severity​ Minor

​Commit (if not initial)​

​Location file (optional)​ ​See function​​update_user_energy_for_current_week​

​Additional note (optional)​

​12.​ ​Misleading endpoint name claimBoostedRewards​

​Status​ won't solve

​Severity​ Minor

​Commit (if not initial)​

​Location file (optional)​

​Additional note (optional)​

​None​

​Additional Feedback​

​13.​ ​Block-to-epoch conversion does not work on all chains​
​In the upgrade endpoint, the amount of XMEX to mint per block is translated into an amount of​
​XMEX to mint per epoch, and this computation assumes that an epoch lasts 14400 blocks.​
​Although this assumption is true on mainnet, it does not hold on all chains, e.g. on devnet.​

​let​​locked_tokens_per_block_mapper​​=​
​SingleValueMapper::new(StorageKey::new(b"lockedTokensPerBlock"));​

​let​​locked_tokens_per_block​​=​​locked_tokens_per_block_mapper.take();​
​let​​locked_tokens_per_epoch​​=​​locked_tokens_per_block​​*​​10u64​​*​​60u64​​*​​24u64;​
​//​​14400​​blocks​​per​​epoch​
​self.locked_tokens_per_epoch().set_if_empty(locked_tokens_per_epoch);​

​This would not be particularly harmful since the owner can always change​
​locked_tokens_per_epoch​​. But if the team wants a proper​​way to make the conversion in the​
​upgrade endpoint, they can reach out to the auditor.​

​Mitigation: The team added an optional parameter​​blocks_per_epoch_opt​​to the​​upgrade​
​endpoint, to overwrite the value of​​blocks_per_epoch​​.​​It will not be used when upgrading on​
​mainnet.​

​14.​ ​Special fee burn will be applied twice to some tokens​

​Once the upgrade is done, the non-MEX/XMEX tokens in the smart contract which are​
​non-claimable and were partially burnt in the past by a pair, will be partially burnt again when​
​converted to MEX later on.​

​The team is aware of it and deems the amount affected should be relatively small. However, if​
​they want to prevent the double burn from happening overall, they can reach out to the auditor.​

​15.​ ​Fees Collector needs burn role for MEX​

​The Fees Collector needs to acquire the burn role for MEX (which it does not have yet, at the​
​time this audit is made), in order to be able to receive MEX in the endpoint​

​deposit_swap_fees​​, and when converting tokens to MEX in the endpoint​
​swap_token_to_base_token.​

​Disclaimer​

​The report makes no statements or warranties, either expressed or implied, regarding the​
​security of the code, the information herein or its usage. It also cannot be considered as a​
​sufficient assessment regarding the utility, safety and bugfree status of the code, or any other​
​statements. This report does not constitute legal or investment advice. It is for informational​
​purposes only and is provided on an "as-is" basis. You acknowledge that any use of this report​
​and the information contained herein is at your own risk. The authors of this report shall not be​
​liable to you or any third parties for any acts or omissions undertaken by you or any third parties​
​based on the information contained herein.​

