
1

Security Audit Report

Hatom ush-isolated-lending (2)
MultiversX smart contract

by
on April 29, 2025

2

Table of Contents

Disclaimer 3

Terminology 3

Objective 4

Audit Summary 5

Inherent Risks 6

Code Issues & Recommendations 10

3

Disclaimer
The report makes no statements or warranties, either expressed or implied,

regarding the security of the code, the information herein or its usage. It also

cannot be considered as a sufficient assessment regarding the utility, safety

and bugfree status of the code, or any other statements.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

Terminology
Code: The code with which users interact.

Inherent risk: A risk for users that comes from a behavior inherent to the

code's design.

Inherent risks only represent the risks inherent to the code's design, which are

a subset of all the possible risks. No inherent risk doesn’t mean no risk. It only

means that no risk inherent to the code's design has been identified. Other kind

of risks could still be present. For example, the issues not fixed incur risks for

the users, or the upgradability of the code might also incur risks for the users.

Issue: A behavior unexpected by the users or by the project, or a practice that

increases the chances of unexpected behaviors to appear.

Critical issue: An issue intolerable for the users or the project, that must be

addressed.

Major issue: An issue undesirable for the users or the project, that we strongly

recommend to address.

Medium issue: An issue uncomfortable for the users or the project, that we

recommend to address.

Minor issue: An issue imperceptible for the users or the project, that we advise

to address for the overall project security.

4

Objective
Our objective is to share everything we have found that would help assessing

and improving the safety of the code:

1. The inherent risks of the code, labelled R1, R2, etc.

2. The issues in the code, labelled C1, C2, etc.

3. The issues in the testing of the code, labelled T1, T2, etc.

4. The issues in the other parts related to the code, labelled O1, O2, etc.

5. The recommendations to address each issue.

5

Audit Summary

Initial scope

Repository:

https://github.com/HatomProtocol/hatom-isolated-lending-protocol

Commit: e729384574f44cee2ad62309d02692598b6a7575
MultiversX smart contract path: ./isolated-lending-protocol/

Final scope

Repository:

https://github.com/HatomProtocol/hatom-isolated-lending-protocol

Commit: 400e50d64f2ad5dd9d78d8ff40670ff30636547e
MultiversX smart contract path: ./isolated-lending-protocol/

7 inherent risks in the final scope

0 issue in the final scope

4 issues reported in the initial scope and 0 remaining in the final scope:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 0 0 0 0 0 0

Major 2 0 0 0 0 0

Medium 2 0 0 0 0 0

Minor 0 0 0 0 0 0

https://github.com/HatomProtocol/hatom-isolated-lending-protocol
https://github.com/HatomProtocol/hatom-isolated-lending-protocol

6

Inherent Risks

R1: 1 USH minted by an USH isolated lending module might be

backed by less than $1 worth of collateral.

This is because there is a trust that the oracles providing prices and that the

liquidation bots are active and work properly:

If for any reason the prices returned by the oracles are erroneous, then the

real dollar value of the collateral of USH borrowers might be smaller than

the amount of borrowed USH.

If for any reason, while some users are insolvent, there are no sufficiently

active liquidators to execute liquidations or liquidations fail to be executed

(e.g. because prices fail to be obtained from the oracles), then the amount

of borrowed USH might continue to increase and exceed the dollar value of

the collateral of USH borrowers.

R2: The solvency of a user might be incorrectly assessed, possibly

leading to bad debt or to the liquidations of solvent users.

This is because the solvency of a user depends on the value of his collateral

relative to the value of his debt, and the prices of these tokens are obtained

from external oracles which might make mistake and return incorrect prices.

Consequently:

Insolvent users might be deemed solvent: This would prevent the

liquidations of these users, and would also allow them to borrow assets or

withdraw collateral. This could then further lead to bad debt, i.e. a situation

where USH is not sufficiently backed by collateral, increasing the risk that

the dollar value of USH drops below 1.

Solvent users might be deemed insolvent: This could result in unexpected

liquidations, possibly making borrowers lose funds.

7

R3: Even if a user is solvent, his collateral might be seized by an

external account who repays the user’s debt.

Namely, in the USH isolated lending modules, there is a so-called “redemption

mechanism” allowing anyone to seize the collateral of solvent users by

repaying their debt.

Unlike in liquidations, in a redemption the user’s loan-to-value is supposed to

decrease: the amount of USH debt repaid to him is greater or equal to the

dollar value of the seized collateral. However, this is not guaranteed because

the dollar value of the collateral is obtained from external oracles which might

make mistakes.

Finally, redemptions can be triggered anytime even if the dollar value of USH is

above 1, although in this case they should not be profitable to redeemers.

R4: Users might have to pay a borrowing fee when borrowing USH.

This is because, at the time a user borrows some USH, his debt is increased

not only by the amount being borrowed, but also by an extra borrowing fee.

Therefore, in order to later withdraw all his collateral, the user must reimburse

the amount borrowed and the borrowing fee.

The borrowing fee depends on the total amount of USH recently redeemed in

the smart contract, and is capped to a maximum of 5%.

Example: Let’s say significant redemptions occurred and the borrowing fee of

5%. Alice borrows 100 USH, and her debt is then

USH. If later she wants to get back her collateral, she will have to reimburse the

100 USH she borrowed, and the additional 5 USH from the borrowing fee.

R5: Users might not be able to acquire the USH needed for repaying

their debt.

This is because borrowers must repay their whole debt in USH, which includes

the USH minted for them as well as the borrowing fee which was kept in the

100 + 5% × 100 = 105

8

smart contract. Therefore, in order to repay their debt, they must acquire USH,

and for this they have two options:

1. Minting new USH: At the time of this audit, users can only mint new USH by

making new borrows. However, by making a new borrow, users would

increase their total debt, so this approach does not let them repay their

current debt.

2. Finding USH in the circulating supply: However, the part of the circulating

supply that users can acquire might be smaller than their total debt, in

particular if the borrowing fees were not withdrawn by the admin or not

made acquirable to users. In turn, it might be impossible for all users to

repay their debt unless other users borrow USH and make it acquirable.

R6: Users who deposit liquid staking tokens or HTokens as collateral

stop earning interests from these tokens.

This is because, when users deposit liquid staking tokens (sEGLD or sTAO) or

HTokens (HsEGLD or HsTAO) as collateral in the smart contract, the staking

interests and lending interests are redirected to the Hatom protocol.

R7: Users might not be able to withdraw collateral at all or to

withdraw collateral in the deposited form.

This is because:

1) When a user deposits collateral in base tokens (EGLD or TAO) or liquid

staking tokens (sEGLD or sTAO), his tokens are converted to liquid staking

tokens and then to supply tokens in Hatom money markets (HsEGLD or

HsTAO).

2) When a user withdraws collateral, he has the following possibilities:

He can decide to withdraw collateral in supply tokens, which is always

possible.

He can decide to withdraw collateral in liquid staking tokens, but this might

be impossible if there is an insufficient supply of liquid staking tokens in the

9

money market.

He can decide to withdraw collateral in base tokens, but this requires first

converting supply tokens to liquid staking tokens, which might be

impossible if there is an insufficient supply of liquid staking tokens in the

money market. Moreover, in the case of EGLD collateral, the user would not

receive EGLD directly, but rather an unstaking NFT from the liquid staking

protocol, which can be converted to EGLD only after waiting an unbonding

period.

10

Code Issues & Recommendations

Since the code is not open-source, only the remaining issues are published.

