
1

Security Audit Report

Axelar mvx-token-manager
MultiversX smart contract

by
on April 21, 2025

2

Table of Contents

Disclaimer 3

Terminology 3

Objective 4

Audit Summary 5

Code Issues & Recommendations 6

C1: At most 1 external account should be able to mint tokens 6

C2: No flow limit is enforced when flow limiter asks for the most restrictive

flow limit

8

C3: "token_id" might change if issued several times and all previous users

lose their funds

9

C4: Funds can't be deposited in a Token Manager of type Lock/Unlock 11

C5: No check that user EGLD amount for issuing token is 0.05 EGLD and user

would lose the extra EGLD

12

C6: User is not refunded of EGLD issuance cost if issuance fails 13

C7: "upgrade" endpoint has unnecessary arguments and can lead to more

than 1 operator in Token Manager

14

C8: Adding Token Manager as minter in "deploy_interchain_token" is useless 16

C9: Misleading endpoint name "invalid_token_identifier” 17

3

Disclaimer
The report makes no statements or warranties, either expressed or implied,

regarding the security of the code, the information herein or its usage. It also

cannot be considered as a sufficient assessment regarding the utility, safety

and bugfree status of the code, or any other statements.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

Terminology
Code: The code with which users interact.

Inherent risk: A risk for users that comes from a behavior inherent to the

code's design.

Inherent risks only represent the risks inherent to the code's design, which are

a subset of all the possible risks. No inherent risk doesn’t mean no risk. It only

means that no risk inherent to the code's design has been identified. Other kind

of risks could still be present. For example, the issues not fixed incur risks for

the users, or the upgradability of the code might also incur risks for the users.

Issue: A behavior unexpected by the users or by the project, or a practice that

increases the chances of unexpected behaviors to appear.

Critical issue: An issue intolerable for the users or the project, that must be

addressed.

Major issue: An issue undesirable for the users or the project, that we strongly

recommend to address.

Medium issue: An issue uncomfortable for the users or the project, that we

recommend to address.

Minor issue: An issue imperceptible for the users or the project, that we advise

to address for the overall project security.

4

Objective
Our objective is to share everything we have found that would help assessing

and improving the safety of the code:

1. The inherent risks of the code, labelled R1, R2, etc.

2. The issues in the code, labelled C1, C2, etc.

3. The issues in the testing of the code, labelled T1, T2, etc.

4. The issues in the other parts related to the code, labelled O1, O2, etc.

5. The recommendations to address each issue.

5

Audit Summary

Initial scope

Repository: https://github.com/multiversx/sc-axelar-cgp-rs

Commit: 6ccc55290af7c2e3a14909e2bb331b113eef8ab3
MultiversX smart contract path: ./token-manager/

Final scope

Repository: https://github.com/multiversx/sc-axelar-cgp-rs

Commit: b863a1ba7fe8180e63961f721a63c6d53d818137
MultiversX smart contract path: ./token-manager/

0 inherent risk in the final scope

0 issue in the final scope

9 issues reported in the initial scope and 0 remaining in the final scope:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 0 0 0 0 0 0

Major 1 0 0 0 0 0

Medium 6 0 0 0 0 0

Minor 2 0 0 0 0 0

https://github.com/multiversx/sc-axelar-cgp-rs
https://github.com/multiversx/sc-axelar-cgp-rs

6

Code Issues & Recommendations

C1: At most 1 external account should be able to mint tokens

Severity: Major Status: Fixed

Location

token-manager/src/lib.rs
deploy_interchain_token

Description

Current behavior: It is possible that multiple addresses are minters at the same

time, i.e. they are able to mint tokens in the Token Manager.

Namely, as long as the token identifier is not issued, it is possible to call

deploy_interchain_token multiple times, and each time the internal method

add_minter would grant the mint role to the address given as optional

argument (or the zero address if the optional argument was not provided).

fn deploy_interchain_token(minter: Option<ManagedAddress>, ...) {
 ...
 add_minter(self.blockchain().get_sc_address());
 if minter.is_some() {
 add_minter(minter.unwrap());
 } else { add_minter(ManagedAddress::zero()); }
 ...
}

fn add_minter(minter: ManagedAddress) {
 add_role(minter, Roles::MINTER);
}

fn add_role(address: ManagedAddress, new_roles: Roles) {
 account_roles(address).update(|roles| {
 roles.insert(new_roles)
 });
}

7

Since the token issuance is made via an asynchronous call to the metachain, it

can take multiple blocks to be effective, thus leaving time to call

deploy_interchain_token multiple times.

Moreover, this situation can happen both if the token is deployed directly on

MultiversX, or if it is deployed from another blockchain.

Expected behavior: According to the rules of the Axelar network which are

already enforced on other blockchains, there should be at most 1 external

address allowed to mint tokens.

Worst consequence: Projects whitelist multiple minters on MultiversX,

increasing the risk that one minter is corrupted and mints tokens which are not

backed by tokens on other blockchains, making users lose funds.

Recommendation

We recommend ensuring that only 1 external account can be granted the

minter role. For this, we introduce a storage minter_address , which is

changed each time a minter is set, in particular when a minter transfers his

minter role.

Then, in the endpoint deploy_interchain_token :

We don't grant the minter role to the minter argument if a minter was

already set in minter_address .

We don’t grant the minter role to the Token Manager itself, because this is

unnecessary (see C8: Adding Token Manager as minter in

"deploy_interchain_token" is useless) and would lead to 2 minters.

8

C2: No flow limit is enforced when flow limiter asks for the most

restrictive flow limit

Severity: Medium Status: Fixed

Location

token-manager/src/flow_limit.rs

Description

Current behavior: When the flow limit is set to 0 , then in fact it is interpreted

as if there was no limit at all on the interchain transfers. Indeed, the method

add_flow_out_raw responsible for verifying that limits are not exceeded

would return early in this case:

fn add_flow_out_raw(flow_out_amount: BigUint) {
 let flow_limit = self.flow_limit().get();
 if flow_limit == 0 {
 return;
 }
 ...
}

Expected behavior: If the flow limiter sets the flow limit to 0 , then the

effective limit should be 0 , i.e. users shouldn't be able to transfer any amount

of tokens, as this is the intention of the flow limiter.

Worst consequence: A project needs to temporarily shut down interchain

transfers for his token, in order to prevent an ongoing issue from escalating.

For this, the flow limiter sets the flow limit to 0 , thinking that it would fully

block interchain transfers, but in fact the opposite occurs: users can transfer

arbitrary amounts of tokens, which might aggravate the issue.

Recommendation

We suggest changing the type of the storage flow_limit to

Option<BigUint> , instead of BigUint . Then:

If the flow limit is None , then there is no limit on the interchain transfers,

If the flow limit is Some(x) , e.g. Some(0) , then the effective limit is x .

9

C3: "token_id" might change if issued several times and all previous

users lose their funds

Severity: Medium Status: Fixed

Location

token-manager/src/lib.rs

Description

Current behavior: The token token_id of the Token Manager might change.

Namely, as long as it is not set, the endpoint deploy_interchain_token can

be called an arbitrary number of times: each call issues a token, and stores the

resulting identifier in token_id in the callback deploy_token_callback .

Therefore, token_id is overwritten in each callback.

However, this means that if between two callbacks, some tokens are minted

and sent to users, then these tokens would become valueless as they would

not be recognized by the Token Manager any longer.

Expected behavior: Once the token token_id of the Token Manager is set in

storage, it should never change, to guarantee that this token will be forever

recognized by the smart contract and hence that users holding this token will

be able to perform interchain transfers.

Worst consequence: Some users on MultiversX hold valueless tokens that

they can’t transfer to other blockchains.

Example: Consider an existing bridge between several blockchains other than

MultiversX. The project which initially created this bridge plans to extend to

MultiversX, and therefore performs a remote deployment of a Native Interchain

Transfer followed by a minting of an initial supply on MultiversX. The following

sequence occurs on MultiversX:

The Token Manager is successfully deployed.

A 1st transaction to issue the token is triggered.

2 blocks later, a 2nd transaction to issue the token is accidentally triggered.

The callback of the 1st issuance is reached, setting the token in storage.

The project mints an initial supply of tokens and sends them to some users.

10

The callback of the 2nd issuance is reached, overwriting the token in

storage. In turn, the tokens previously sent to users have no value any

longer.

Recommendation

In the callback deploy_token_callback , we recommend setting the storage

token_id only if it is empty, by using set_if_empty .

11

C4: Funds can't be deposited in a Token Manager of type

Lock/Unlock

Severity: Medium Status: Fixed

Description

Current behavior: It is impossible to fund the Token Manager, i.e. to deposit

tokens in it. This is because there are no endpoints to fund the Token Manager,

and moreover the ITS deploys each Token Manager as a non-payable smart

contract.

This is problematic for a Token Manager of type “Lock/Unlock”, as then it

means that the Token Manager has no tokens initially, hence incoming

interchain transfers would be impossible, and the only way to use the bridge

initially would be to do outgoing interchain transfers. However, some projects

might have wanted to allow users to bridge their funds to MultiversX from the

start.

Expected behavior: It should be possible to fund a Token Manager of type

“Lock/Unlock”. This is because initially, such a Token Manager would have no

funds, hence initial deposits would be necessary if it is desired to allow users

from other blockchains to do interchain transfers towards MultiversX.

Recommendation

We suggest adding an endpoint donate_tokens that accepts only the token of

the Token Manager, and verifies that the Token Manager is of type

“Lock/Unlock”.

12

C5: No check that user EGLD amount for issuing token is 0.05 EGLD

and user would lose the extra EGLD

Severity: Medium Status: Fixed

Location

token-manager/src/lib.rs
deploy_interchain_token

Description

Current behavior: When calling the endpoint deploy_interchain_token to

issue the Token Manager’s token, there is no check that the EGLD received is

0.05 EGLD, i.e. the cost of the issuance.

If the user provided more EGLD e.g. by accident, then 0.05 EGLD would

effectively be used for the issuance, but the user would lose the extra EGLD.

Expected behavior: The endpoint deploy_interchain_token should

exclusively accept a payment of 0.05 EGLD, as this is the cost for issuing a

token.

Recommendation

In the endpoint deploy_interchain_token , we recommend verifying that the

amount of received EGLD equals DEFAULT_ESDT_ISSUE_COST , i.e. 0.05 EGLD.

13

C6: User is not refunded of EGLD issuance cost if issuance fails

Severity: Medium Status: Fixed

Location

token-manager/src/lib.rs
deploy_token_callback

Description

Current behavior: If the issuance of the Token Manager’s token fails, then the

user who paid for the issuance cost is not refunded, because the callback

deploy_token_callback does not perform any refunding.

Expected behavior: If the issuance of the Token Manager’s token fails, the user

who paid for the issuance cost should be refunded.

Recommendation

In the callback deploy_token_callback , if the issuance has failed, we

recommend refunding the issuance cost to the user. For this, the user address

should be forwarded as an argument to deploy_token_callback from the

endpoint deploy_interchain_token .

Moreover, in case deploy_interchain_token is called by the ITS, then it

should rather receive the user as a new argument, forwarded from the ITS

Factory to the ITS, and from the ITS to the Token Manager.

14

C7: "upgrade" endpoint has unnecessary arguments and can lead

to more than 1 operator in Token Manager

Severity: Medium Status: Fixed

Location

token-manager/src/lib.rs
upgrade

Description

Current behavior: The upgrade endpoint takes several arguments, which are

unnecessary because the parameters of the smart contract were already set at

deployment:

fn upgrade(
 interchain_token_service: ManagedAddress,
 implementation_type: TokenManagerType,
 interchain_token_id: ManagedByteArray,
 params: DeployTokenManagerParams,
) { self.init(...) }

Most of these arguments would not be set in storage in init , because they

are set using set_if_empty and were already set at deployment. However,

there are two exceptions:

The operator role is granted to the address given as argument params ,

The flow limiter role and the operator role are granted to the ITS address

given as argument interchain_token_service .

 fn init(...) {
 ...
 self.add_role(operator, Roles::FLOW_LIMITER | Roles::OPERATOR);
 self.add_role(interchain_token_service, Roles::FLOW_LIMITER |
Roles::OPERATOR);
 ...
}

Therefore, the Token Manager might be left with unintended flow limiters and

operators, in particular with more than 1 operator.

15

Expected behavior: The upgrade endpoint should have no arguments, as it is

not supposed to perform any logic and to set any storage.

In particular, from Axelar specifications, there should be at most 1 operator per

Token Manager, thus no additional operator should be set when upgrading the

smart contract.

Recommendation

We recommend removing all arguments from the upgrade endpoint and not

performing any logic inside it.

16

C8: Adding Token Manager as minter in "deploy_interchain_token"

is useless

Severity: Minor Status: Fixed

Location

token-manager/src/lib.rs
deploy_interchain_token

Description

In the endpoint deploy_interchain_token , the line

self.add_minter(self.blockchain().get_sc_address());

is unnecessary, because it is useless to grant the minter role to the Token

Manager. Indeed, a minter is an account which can call the endpoint mint ,

however the Token Manager has no way to call that endpoint and is not

supposed to call it.

Note: This line of code was copied from the Solidity code, where it made sense

because the Token Manager is distinct from the token’s ERC20 smart contract.

Recommendation

We recommend deleting the useless line from the endpoint

deploy_interchain_token .

17

C9: Misleading endpoint name "invalid_token_identifier”

Severity: Minor Status: Fixed

Location

invalid_token_identifier

Description

The endpoint invalid_token_identifier returns the token identifier, if

already set, of the Token Manager, and returns None otherwise. Therefore,

the naming invalid_token_identifier is slightly misleading, because the

endpoint does not return information about the validity of the token.

Recommendation

We suggest renaming the endpoint invalid_token_identifier e.g. into

get_opt_token_identifier . We would then also rename the endpoint

token_manager_invalid_token_identifier of the ITS Factory e.g. into

token_manager_get_opt_token_identifier .

