
1

Security Audit Report

Axelar mvx-interchain-token-
service

MultiversX smart contract

by
on April 21, 2025

2

Table of Contents

Disclaimer 4

Terminology 4

Objective 5

Audit Summary 6

Inherent Risks 7

Code Issues & Recommendations 11

C1: Execution of incoming interchain transfer might be locked forever and the

user's tokens are lost

11

C2: Performing asynchronous calls for interchain transfers with smart

contract calls is unnecessary and too complex

14

C3: Attacker might be able to delay interchain transfer by repeatedly

providing insufficient gas for asynchronous call

16

C4: A wrong refund address is provided to Gas Service in some cases 18

C5: The mechanism around trusted blockchains and trusted addresses is

unnecessarily complex

20

C6: Only EGLD should be accepted to pay gas for outgoing interchain

transfers

23

C7: Outgoing interchain transfer might be recorded with metadata different

than the one asked by the user

25

C8: Versioning logic for outgoing interchain transfers is unnecessary 27

C9: The function "fixed_bytes_append" is unnecessarily complex 29

C10: Unnecessarily complex way to convert byte array into u32 in

"take_usize”

31

C11: Unnecessarily complex and misleading processing of 32-byte array in

"head_append”

32

C12: Function "ascii_to_u8" is unnecessarily complex 34

C13: Unnecessary argument "initial_offset" in "raw_abi_decode” 36

C14: Unnecessary endpoint "call_contract_with_interchain_token” 37

C15: Unnecessarily big cap values used in helper "abi_decode" for structs

“SendToHubPayload” and “DeployInterchainTokenPayload”

38

C16: The struct "SendToHubPayload" is used for receiving payloads from

the Axelar Hub

40

3

C17: Endpoint "invalid_token_manager_address" has misleading name and

return type

42

C18: Inconsistent logic to pay gas for interchain calls with ESDT and with

EGLD

43

C19: Useless "sender" argument in function "interchain_token_id” 44

C20: No explicit check that the caller of "link_token" is the ITS Factory 45

C21: Misleading variable name "destination_address” 46

C22: Unused methods, event and struct 47

C23: Obsolete comment in "init” 48

4

Disclaimer
The report makes no statements or warranties, either expressed or implied,

regarding the security of the code, the information herein or its usage. It also

cannot be considered as a sufficient assessment regarding the utility, safety

and bugfree status of the code, or any other statements.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

Terminology
Code: The code with which users interact.

Inherent risk: A risk for users that comes from a behavior inherent to the

code's design.

Inherent risks only represent the risks inherent to the code's design, which are

a subset of all the possible risks. No inherent risk doesn’t mean no risk. It only

means that no risk inherent to the code's design has been identified. Other kind

of risks could still be present. For example, the issues not fixed incur risks for

the users, or the upgradability of the code might also incur risks for the users.

Issue: A behavior unexpected by the users or by the project, or a practice that

increases the chances of unexpected behaviors to appear.

Critical issue: An issue intolerable for the users or the project, that must be

addressed.

Major issue: An issue undesirable for the users or the project, that we strongly

recommend to address.

Medium issue: An issue uncomfortable for the users or the project, that we

recommend to address.

Minor issue: An issue imperceptible for the users or the project, that we advise

to address for the overall project security.

5

Objective
Our objective is to share everything we have found that would help assessing

and improving the safety of the code:

1. The inherent risks of the code, labelled R1, R2, etc.

2. The issues in the code, labelled C1, C2, etc.

3. The issues in the testing of the code, labelled T1, T2, etc.

4. The issues in the other parts related to the code, labelled O1, O2, etc.

5. The recommendations to address each issue.

6

Audit Summary

Initial scope

Repository: https://github.com/multiversx/sc-axelar-cgp-rs

Commit: 6ccc55290af7c2e3a14909e2bb331b113eef8ab3
MultiversX smart contract path: ./interchain-token-service/

Final scope

Repository: https://github.com/multiversx/sc-axelar-cgp-rs

Commit: b863a1ba7fe8180e63961f721a63c6d53d818137
MultiversX smart contract path: ./interchain-token-service/

4 inherent risks in the final scope

0 issue in the final scope

23 issues reported in the initial scope and 0 remaining in the final scope:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 1 0 0 0 0 0

Major 3 0 0 0 0 0

Medium 3 0 0 0 0 0

Minor 16 0 0 0 0 0

https://github.com/multiversx/sc-axelar-cgp-rs
https://github.com/multiversx/sc-axelar-cgp-rs

7

Inherent Risks

R1: Users outgoing interchain transfers might never be successfully

executed on the destination blockchain and they will never be

refunded on MultiversX.

This is because, for reasons explained below, outgoing interchain transfers

might either (1) never be executed, or (2) be incorrectly executed, or (3)

systematically fail to be executed. Moreover, in such cases the tokens would

be lost as there is no refunding mechanism implemented on MultiversX.

1) An outgoing interchain transfer might never be executed if for any reason the

Axelar network does not forward it to the destination blockchain.

2) An outgoing interchain transfer might be incorrectly executed if the

transfer's information is altered by the Axelar network while being forwarded to

the destination blockchain.

Example: The ITS Hub on the Axelar blockchain modifies the amount of the

transfer based on scaling rules which depend on the token decimals (both on

the source and destination blockchains) and on the blockchains requirements

(e.g. the maximal allowed integers). In particular, truncations might lead to

smaller transferred amounts than expected.

3) An outgoing interchain transfer might systematically fail to be executed on

the destination blockchain, i.e. even if it is possible to re-try the execution, it

would never succeed. There are two main types of failures:

3-a) Failures due to user errors in the interchain transfer's information.

Examples:

The transfer's data (e.g. the destination address or smart contract call) is in

a format incompatible with the destination blockchain.

There is no Token Manager deployed on the destination blockchain for the

token being transferred.

3-b) Failures that the user did not expect or could not anticipate.

Examples:

8

The Token Manager of a custom token on the destination blockchain is of

type "Lock/Unlock" and has an insufficient reserve of tokens. This is

impossible to anticipate: the reserve of the Token Manager on the

destination blockchain might have been sufficient at the time the interchain

transfer was registered on MultiversX, but might have become too small by

the time the interchain transfer arrives at destination.

The Token Manager is of type "Mint/Burn" and has lost its minting role by

the time the interchain transfer arrives at destination.

The admins of the Token Manager on the destination blockchain have the

ability to limit the amounts of tokens that can be transferred to that

blockchain. Therefore, they could completely block interchain transfers.

The destination address is a smart contract that is upgraded while the

interchain transfer is being forwarded, and the endpoint signature becomes

incompatible with the signature prescribed in the interchain transfer’s

information.

The ITS on the destination blockchain has lost its right to transfer the token

since the interchain transfer was initiated.

The amount to transfer to the destination address exceeds the maximum

integer that can be represented in a smart contract of the destination

blockchain. For example, on Sui and Stellar, integers are u64 , while on

EVMs, integers are u256 .

R2: Users incoming interchain transfers might never be

successfully executed on MultiversX and they might never be

refunded on the source blockchain.

For the same reasons described in R1 regarding outgoing interchain transfers,

incoming interchain transfers might never be successfully executed.

In particular, an example specific to MultiversX of incoming interchain transfers

that systematically fail to be executed, is a transfer consisting in a call to a

smart contract on a different shard. Indeed, ITS only allows calls to smart

contracts on the same shard.

Finally, unlike in R1, there might be a refunding mechanism implemented on the

source blockchain, however if there is no such mechanism, then users would

9

have lost their tokens if their incoming interchain transfers are never

successfully executed on MultiversX.

R3: Users' registration of a token from MultiversX might not be

successfully executed on the destination blockchain.

This is because, for reasons explained below, the registration of a token on a

destination blockchain might either (1) never be executed, or (2) be incorrectly

executed, or (3) systematically fail to be executed.

1) The token's registration might never be executed if for any reason the Axelar

network does not forward it to the destination blockchain.

Example: the ITS Hub on the Axelar blockchain currently only forwards the 1st

attempt to register a token to a given destination blockchain, and does not

forward any subsequent attempts. Therefore, if the 1st registration fails for any

reason on the destination blockchain, then it would be impossible to attempt

the registration again.

2) The token's registration might be incorrectly executed if the registration's

information is altered by the Axelar network while being forwarded to the

destination blockchain.

Example: The ITS smart contract on the destination blockchain might perform

normalizations of the token's information (e.g. name and symbol), to comply

with the blockchain's specific requirements.

3) The token's registration might systematically fail to be executed on the

destination blockchain, i.e. even if it is possible to re-try the execution, it would

never succeed.

Example: The registration's data (e.g. minter address, or decimals) is in a

format incompatible with the destination blockchain.

R4: Users' registration of a token from a source blockchain might

not be successfully executed on MultiversX.

10

For the same reasons described in R3 regarding outgoing token registrations,

incoming token registrations from a source blockchain to MultiversX might

never be successfully executed.

Here are additional examples that specifically apply to incoming registrations:

a) The token's registration might not be executed with the expected name and

ticker, because the ITS performs the following normalizations on the name and

ticker given as arguments, in order to comply with MultiversX requirements:

Non-alphanumeric characters are skipped,

The name and ticker are truncated above the maximum allowed length (20

and 10, respectively),

The name and ticker are padded with "0" if their length is below the minimal

allowed length, i.e. 3,

For the ticker, all characters are uppercased.

b) The token's registration would fail if the token's decimals exceed the

maximal allowed decimals on MultiversX, i.e. 18.

11

Code Issues & Recommendations

C1: Execution of incoming interchain transfer might be locked

forever and the user's tokens are lost

Severity: Critical Status: Fixed

Location

interchain-token-service/src/proxy_its.rs
execute_with_token_callback

Description

Current behavior: When an incoming interchain transfer with smart contract

call is executed, the execution is made through an asynchronous call with

callback. In order to protect against concurrent executions, a lock is created

before the asynchronous call, and is cleared in the callback.

However, it is possible that the callback execute_with_token_callback fails,

but then the lock would not be cleared. In turn, the user would never be

allowed to re-try executing the interchain transfer, and he would effectively

have lost his tokens.

The callback might fail for various reasons, e.g. due to unforeseen scenarios.

Below we detail two examples of such scenarios which can make the callback

fail. Both assume that the smart contract being called is on another shard.

1) Hitting flow limits when sending back tokens to the Token Manager in the

callback: In the callback, in case the asynchronous call has failed, the tokens

are sent back to the Token Manager by calling its endpoint take_token .

However, this endpoint can fail due to flow limits, i.e. limits on the amount of

tokens that is currently allowed to be deposited in the Token Manager for

outgoing interchain transfers. More precisely, we have the following

requirement in take_token :

12

require!(
 user_amount <= flow_limit &&
 user_amount + (total_flow_in - total_flow_out) <= flow_limit,
 "Flow limit exceeded"
);

Therefore, since the destination smart contract of the interchain transfer is on

another shard, other transactions might be executed before the callback is

reached, which could make the above requirement fail in the following cases:

The maximal amount flow_limit that can be deposited in a single

transaction might have been reduced, and if it leads to user_amount >
flow_limit , then the callback would fail.

The total amount of tokens total_flow_in deposited in the Token

Manager for outgoing interchain transfers might have increased, and if it

leads to user_amount + (total_flow_in - total_flow_out) >
flow_limit , then the callback would fail.

2) ITS or Token Manager is forbidden to transfer the token in the callback: If

the ITS or the Token Manager is frozen for the token by the time the callback is

executed, or transfer roles have been set for the token, then the callback would

fail.

Expected behavior: The lock on an interchain transfer with smart contract call

should be present only during the period where it is actually being executed,

that is, from the time the asynchronous call is launched, until the callback is

executed.

This is to ensure that the user can re-try to execute the interchain transfer in

case a previous execution has failed.

Worst consequence: A user loses his funds, because of a failure of the

callback execute_with_token_callback .

Moreover, when this issue is combined with C3: Attacker might be able to

delay interchain transfer by repeatedly providing insufficient gas for

asynchronous call, then a malicious attacker could make any user lose his

funds from an interchain transfer with a call to a smart contract on a another

shard, by executing the interchain transfer with insufficient gas for the

asynchronous call. We describe the precise steps that the attacker would

follow in the example below.

13

Example: A malicious user Alice is insolvent in a Lending Borrowing protocol

which is not in the same shard as ITS, and Bob from another blockchain makes

an interchain transfer of 10,000$ worth of tokens with a smart contract call to

liquidate Alice. To prevent the liquidation, Alice proceeds as follows:

She executes Bob’s interchain transfer with insufficient gas for the

asynchronous call.

While the asynchronous call is ongoing, she records an outgoing interchain

transfer such that the flow limit in the Token Manager is saturated.

The callback then hits the flow limit and fails. Therefore the liquidation can’t

be re-tried, and Bob has lost 10,000$ worth of tokens.

Recommendation

We suggest following the recommendation to C2: Performing asynchronous

calls for interchain transfers with smart contract calls is unnecessary and too

complex, which also resolves this issue.

Alternatively, in case the above recommendation does not fit with the project’s

needs, we suggest reaching out to the auditor to discuss about alternative

solutions.

14

C2: Performing asynchronous calls for interchain transfers with

smart contract calls is unnecessary and too complex

Severity: Major Status: Fixed

Location

interchain-token-service/src/proxy_its.rs
executable_contract_execute_with_interchain_token

Description

Current behavior: Incoming interchain transfers with smart contract calls are

performed asynchronously. However, performing asynchronous calls (1) is

unnecessary, and (2) results in a highly complex mechanism.

1) Asynchronous calls are unnecessary: As explained in the section “Expected

behavior”, projects integrating with Axelar ITS can be assumed to be on the

same shard as ITS, thus they can be called synchronously.

2) The resulting execution mechanism is highly complex:

In order to prevent replays of the interchain transfer while an asynchronous

execution is ongoing, a lock is created before the asynchronous call, and

removed in the callback. This lock mechanism has led to the issue C3:

Attacker might be able to delay interchain transfer by repeatedly providing

insufficient gas for asynchronous call.

In case the asynchronous call has failed, the tokens need to be sent back to

the Token Manager. This mechanism has led to the issue C1: Execution of

incoming interchain transfer might be locked forever and the user's tokens

are lost.

In order to allow re-trials of a failed interchain transfer, the Gateway

message is checked before the asynchronous call, and only validated in the

callback if the execution was successful, to prevent replays. On other non-

sharded blockchains, e.g. on Ethereum, the message is simply directly

validated before executing the transfer.

Sufficient gas should be carefully reserved for executing the callback as

well as for finishing the execution after registering the asynchronous call.

15

Expected behavior: The execution of an interchain transfer with a smart

contract call should be done synchronously. This is because:

1) According to the Axelar team, there is no need to support smart contracts on

other shards.

Indeed, as there are currently no smart contracts deployed on MultiversX

which integrate the ITS protocol, it is possible to require that future smart

contracts should be deployed in the same shard as ITS if they want to integrate

with it, so that interchain transfers can be done synchronously.

This way, even projects on other shards would be able to indirectly receive

interchain transfers by deploying a proxy smart contract on the shard of ITS.

This proxy would receive the interchain transfers in an endpoint

executeWithInterchainToken , and if needed, handle the logic to forward the

tokens to the protocol's smart contracts on other shards.

2) Synchronous calls would significantly simplify the code, thereby reducing

the risk of introducing issues in future changes.

Recommendation

We recommend executing incoming interchain transfers with smart contract

calls synchronously, i.e. by using execute_on_dest_context instead of

register_promise , effectively forcing smart contracts integrating with Axelar

ITS to be on the same shard.

This approach incidentally solves other issues of this report:

C3: Attacker might be able to delay interchain transfer by repeatedly

providing insufficient gas for asynchronous call,

C1: Execution of incoming interchain transfer might be locked forever and

the user's tokens are lost.

In turn, we can simplify the smart contract as follows:

The lock mechanism can be deleted.

The callback execute_with_token_callback can be deleted, in particular

the logic to send back tokens to the Token Manager.

The message can be directly validated before calling the smart contract.

The mechanism for reserving gas can be deleted, including the constants

EXECUTE_WITH_TOKEN_CALLBACK_GAS and KEEP_EXTRA_GAS .

16

C3: Attacker might be able to delay interchain transfer by repeatedly

providing insufficient gas for asynchronous call

Severity: Major Status: Fixed

Location

interchain-token-service/src/proxy_its.rs

Description

Current behavior: When an incoming interchain transfer with smart contract

call is executed, the execution is made through an asynchronous call with

callback. In order to protect against concurrent executions, a lock is created

before the asynchronous call, and is cleared in the callback.

However, there is no way to guarantee that sufficient gas is provided to the

asynchronous call for successfully executing the endpoint of the destination

smart contract. Indeed, this gas is obtained from the gas left in the transaction

when registering the asynchronous call, but this gas left could be too small, as

the caller provided an arbitrary amount of gas to the transaction.

Consequently, if the gas is insufficient and if the smart contract is on a

different shard than ITS, then users must wait during a few blocks (typically

around 30 seconds) before they can attempt to re-execute the interchain

transfer.

In the worst case, a malicious actor could delay the execution of an interchain

token transfer of another user over an extended period of time, by repeatedly

performing the interchain transfer with insufficient gas.

Expected behavior: The protocol should ensure that the incoming interchain

transfer can be called with a sufficient amount of gas for the asynchronous

call.

Worst consequence: An attacker prevents an incoming interchain transfer with

a call to a smart contract on a different shard from being executed over an

arbitrarily long period of time. For this, he executes the call with insufficient

gas, and repeats this each time the callback is reached.

Note however that, in order to perform such an attack, the attacker would need

to be the first to re-execute the interchain transfer each time the callback is

reached.

17

Example: A cross-chain liquidation of 10000$ arrives to MultiversX, and the

borrower succeeds to prevent the liquidation over an extended period of time,

until a point where he has become so insolvent that liquidating him leaves bad

debt in the protocol.

Recommendation

We suggest following the recommendation to C2: Performing asynchronous

calls for interchain transfers with smart contract calls is unnecessary and too

complex, which also resolves this issue.

Alternatively, in case the above recommendation does not fit with the project’s

needs, we suggest reaching out to the auditor to discuss about alternative

solutions.

18

C4: A wrong refund address is provided to Gas Service in some

cases

Severity: Major Status: Fixed

Location

interchain-token-service/src/proxy_gmp.rs

Description

Current behavior: When a user performs an outgoing interchain call, he can

pre-pay the gas for the interchain call by sending tokens which are forwarded

to the Gas Service smart contract. Along the gas payment, a refund address is

provided to the Gas Service smart contract. This way, in case there are gas

tokens remaining at the end of the interchain call, the relayer managing the Gas

Service smart contract can refund that address.

However, the provided refund address might be erroneous. Namely, it is always

the caller of the ITS smart contract, which in the following cases would not be

the user, but rather the ITS Factory:

When the outgoing interchain call consists in linking a custom token,

When the outgoing interchain call consists in deploying a token on a

destination blockchain.

In these cases, the relayer executing the interchain call would be misled into

thinking that the address to refund is the ITS Factory, and in turn, the user

might not be refunded.

Expected behavior: For any outgoing interchain call, the refund address that

ITS provides to the Gas Service smart contract should be the address of the

account performing the interchain call.

This is to ensure that, if there are gas tokens left remaining at the end of the

interchain call, the relayer would refund the correct address.

Worst consequence: The relayer refunds the ITS Factory instead of the user.

Recommendation

19

We recommend providing the correct address as the argument

refund_address of the proxy endpoints pay_native_gas_for_contract_call
and pay_gas_for_contract_call .

In particular, in case the ITS Factory is calling the ITS, i.e. calling the endpoints

endpoints link_token or deploy_interchain_token , it should also forward

the address of the account performing the transaction. Therefore, the

endpoints link_token and deploy_interchain_token would take that

address as a new argument.

20

C5: The mechanism around trusted blockchains and trusted

addresses is unnecessarily complex

Severity: Medium Status: Fixed

Location

interchain-token-service/src/address_tracker.rs

Description

Current behavior: Incoming and outgoing interchain calls are accepted only if

they are made from/to trusted addresses on trusted blockchains. Among

trusted addresses and blockchains, the Axelar Hub on Axelar plays a special

role, i.e. an interchain call from/to any blockchain can be made by wrapping

the call inside a call to the Axelar Hub on Axelar, which then handles the

forwarding to the destination blockchain.

Since the implementation of the ITS Hub has been completed, all calls are now

supposed to go through it. The logic for sending messages directly to other

trusted addresses on trusted blockchains was kept only for backward

compatibility in existing implementations of the ITS protocol, e.g. on Ethereum,

for applications that perform interchain calls in this way.

However, on MultiversX, no applications are already integrating with Axelar,

therefore it is unnecessary to enable direct calls from/to trusted addresses on

trusted blockchains, i.e. we can assume that all calls will go through the Axelar

Hub. Therefore, the following is unnecessary:

Recording trusted addresses and trusted blockchains, except the Axelar

Hub on Axelar.

Having logic to directly receive or send messages from/to blockchains other

than Axelar.

Expected behavior: According to the Axelar team, all incoming and outgoing

interchain calls should go through the Axelar Hub on the Axelar blockchain, in

order to significantly simplify the code.

Such a simplification was already implemented in other integrations such as in

Stellar ITS.

https://github.com/axelarnetwork/axelar-amplifier-stellar/blob/18fb30eb84dc0b7e0251d24dc0a31479f07a8183/contracts/stellar-interchain-token-service/src/contract.rs/#L67

21

Recommendation

We recommend performing the following changes:

Deleting the storage trusted_address , and instead having a single

UnorderedSetMapper trusted_chains for trusted blockchains.

Deleting the constant ITS_HUB_ROUTING_IDENTIFIER , and instead having a

new storage its_hub_address to record the address of the Axelar Hub on

Axelar, set in init .

Renaming set_trusted_address , remove_trusted_address and

is_trusted_address into set_trusted_chain , remove_trusted_chain
and is_trusted_chain .

For incoming calls, we verify that the source address is its_hub_address ,

and simplify get_execute_params as we don't need to consider the case

where the source blockchain is different than Axelar:

fn get_execute_params(
 source_address: ManagedBuffer,
 source_chain: ManagedBuffer,
 payload: ManagedBuffer
) -> (u64, ManagedBuffer, ManagedBuffer) {
 let message_type = self.get_message_type(payload);
 require!(message_type == MESSAGE_TYPE_RECEIVE_FROM_HUB);
 require!(source_chain == ITS_HUB_CHAIN_NAME);
 require!(source_address == self.its_hub_address().get());

 let data = SendToHubPayload::abi_decode(payload);
 require!(self.is_trusted_chain(data.destination_chain));
 let message_type = self.get_message_type(data.payload);

 return (message_type, data.destination_chain, data.payload);
}

For outgoing calls, similarly, we send the call to its_hub_address , and

simplify get_call_params as we don't need to consider the case where

the destination blockchain is different than Axelar:

22

fn get_call_params(
 destination_chain: ManagedBuffer,
 payload: ManagedBuffer
) -> (ManagedBuffer, ManagedBuffer, ManagedBuffer) {
 require!(destination_chain != *ITS_HUB_CHAIN_NAME);
 require!(self.is_trusted_chain(destination_chain));

 let hub_address = self.its_hub_address.get();
 let data = SendToHubPayload {
 message_type: MESSAGE_TYPE_SEND_TO_HUB,
 destination_chain,
 payload,
 };
 return (ITS_HUB_CHAIN_NAME, hub_address, data.abi_encode())
}

23

C6: Only EGLD should be accepted to pay gas for outgoing

interchain transfers

Severity: Medium Status: Fixed

Location

interchain-token-service/src/user_functions.rs
get_transfer_and_gas_tokens

Description

Current behavior: When a user initiates an outgoing interchain transfer, he can

pay the gas for the relayer with any token, i.e. EGLD or ESDT tokens.

However, relayers currently only forward interchain calls whose gas is paid in

EGLD.

Therefore, if users pay gas in ESDT tokens, their interchain transfers might

never be executed and so they would lose their tokens.

Moreover, the current logic for supporting ESDT tokens as gas payments is not

fully functional: it does not work when the token to transfer is EGLD. Indeed, in

this case, the method get_transfer_and_gas_tokens returns that the token to

transfer is an ESDT (not EGLD) with identifier "EGLD-000000", which would

not be recognized by ITS, and therefore the transaction would fail.

Expected behavior: According to the Axelar team, users should only be

allowed to pay the gas for outgoing interchain calls with EGLD, because

relayers currently only execute Gateway messages whose gas is paid in EGLD.

In particular, gas should be paid in EGLD for outgoing interchain transfers, as is

already the case for other outgoing interchain calls: linking of tokens and

remote deployments of tokens.

Likewise, on other blockchains, only the native token of the blockchain (e.g.

ETH for Ethereum) can be used to pay gas for outgoing interchain transfers.

Recommendation

For outgoing interchain transfers, we recommend enforcing that the gas is paid

in EGLD, by doing the following simplifications:

24

We delete the method pay_gas_for_contract_call for paying gas with

ESDT tokens,

We simplify the struct TransferAndGasTokens by deleting the field

gas_token ,

We simplify the method get_transfer_and_gas_tokens such that if the

received payment is an array of tokens, it has length 2 and the 2nd payment

is EGLD.

fn get_transfer_and_gas_token(gas_amount: BigUint) {
 match payments {
 EgldOrMultiEsdtPayment::Egld(value) => {
 ...
 }
 EgldOrMultiEsdtPayment::MultiEsdt(esdts) => {
 let [transfer, gas] = self.call_value().multi_esdt();
 require!(transfer.token_nonce == 0);
 require!(gas.token_identifier == ESDT_EGLD_IDENTIFIER);
 require!(gas.amount == gas_amount);
 return TransferAndGasTokens {
 transfer_token: transfer.token_identifier,
 transfer_amount: transfer.amount,
 gas_amount,
 };
 }

25

C7: Outgoing interchain transfer might be recorded with metadata

different than the one asked by the user

Severity: Medium Status: Fixed

Location

interchain-token-service/src/remote.rs
decode_metadata

Description

Current behavior: When submitting an outgoing interchain transfer, the user

provides a ManagedBuffer argument metadata , which represents two pieces

of information: the version of the interchain call (a u32), and the smart

contract data to execute on the destination blockchain (a ManagedBuffer).

However, in case the decoding of the metadata fails, a default metadata is

used:

fn decode_metadata(
 raw_metadata: ManagedBuffer
) -> (MetadataVersion, ManagedBuffer) {
 let decoded_metadata = Metadata::top_decode(raw_metadata);
 if decoded_metadata.is_err() {
 return (MetadataVersion::ContractCall, ManagedBuffer::new())
 }
 ...
}

This would for example happen in the case where metadata has length

smaller than 4 , as then top_decode would fail to extract a u32 version

from it.

Consequently, malformed metadata could be submitted and the interchain

transfer would still be executed, with some information that might not be the

ones intended by the caller.

Expected behavior: When a user submits an outgoing interchain transfer, the

interchain transfer should be done with the exact metadata provided by the

user. In particular, if the user provided a malformed metadata, then the

transaction should revert.

26

Recommendation

In the method decode_metadata , after calling the method top_decode , if the

decoding returned an error, we suggest making the transaction fail.

In particular, metadata of length between 0 and 3 bytes would not be

accepted.

27

C8: Versioning logic for outgoing interchain transfers is

unnecessary

Severity: Minor Status: Fixed

Location

interchain-token-service/src/user_functions.rs
interchain_transfer

Description

Current behavior: When submitting an outgoing interchain transfer, the user

provides a ManagedBuffer argument metadata , which represents two pieces

of information: the version version of the interchain call, and the smart

contract data data to execute on the destination blockchain.

This is both unnecessary and complex:

Unnecessary: Indeed, only one version of interchain transfer is supported

for MultiversX, namely normal interchain transfers.

Complex: It forces the caller to properly merge data and version into a

single argument metadata , and also leads to sophisticated decoding logic

inside the smart contract.

Note: the versioning logic was introduced to mimic the Solidity code, where it

was initially planed to also support express interchain calls.

Expected behavior: According to the Axelar team, it is expected that only one

version of interchain transfers will be supported. Therefore, the versioning

logic for outgoing interchain transfers should be removed, as it would simplify

the smart contract.

For example, such an approach was taken in the Stellar implementation of ITS.

Recommendation

We recommend replacing the metadata argument with a simple data
argument, which would be the (possibly empty) data for executing a smart

contract call on the destination blockchain. Since the version part of the

https://github.com/axelarnetwork/axelar-amplifier-stellar/blob/18fb30eb84dc0b7e0251d24dc0a31479f07a8183/contracts/stellar-interchain-token-service/src/contract.rs/#L268

28

metadata would disappear, we can further delete the method

decode_metadata , the enum MetadataVersion , and the const

LATEST_METADATA_VERSION .

29

C9: The function "fixed_bytes_append" is unnecessarily complex

Severity: Minor Status: Fixed

Location

interchain-token-service/src/abi.rs
fixed_bytes_append

Description

Current behavior: The method fixed_bytes_append processes a byte array

data of arbitrary size, and adds it into another byte array result , padding

the result with zeros on the right so that the final number of bytes is a multiple

of 32 .

However, the code of fixed_bytes_append is unnecessarily complex for the

reasons explained below:

1) There is no need for the modulo operation in the following:

match bytes.len() % 32 {
 0 => 32,
 x => x,
}

Indeed, at this point in the code, the length bytes.len() must be non-zero

and is at most 32, therefore the above code is equivalent to returning

bytes.len() directly.

2) The following condition is useless:

let to_copy = match i == len - 1 {
 false => 32,
 true => match bytes.len() % 32 { ... }
};

Indeed, the number of bytes to copy is always bytes.len() : it is 32 in case

the batch being processed is not the last one (in this case the batch has length

32), and otherwise it is bytes.len() from the previous point.

Expected behavior: The function fixed_bytes_append should be as simple as

possible.

30

Recommendation

We recommend simplifying the function fixed_bytes_append as follows:

fn fixed_bytes_append(
 result: &mut ManagedBuffer,
 data: ManagedBuffer
) {
 data.for_each_batch::<32, _>(|bytes| {
 let mut padded = [0u8; 32];
 padded[..bytes.len()].copy_from_slice(bytes);
 result.append_bytes(&padded);
 });
}

31

C10: Unnecessarily complex way to convert byte array into u32 in

"take_usize”

Severity: Minor Status: Fixed

Location

interchain-token-service/src/abi.rs
take_usize

Description

Current behavior: In the method take_usize , given a byte array of 32 bytes

whose last 4 bytes represent a usize integer, the conversion into a usize
integer is made by doing:

((slice[28] as usize) << 24) + ((slice[29] as usize) << 16)
+ ((slice[30] as usize) << 8) + (slice[31] as usize)

However, this could be made simpler by using existing helpers from the Rust

framework:

u32::from_be_bytes(slice[28..32].try_into().unwrap()) as usize

Expected behavior: The conversions from a byte array to a usize integer in

the method take_usize should be as simple as possible, and use helpers

from the Rust framework instead of custom implementations whenever

possible.

Recommendation

We recommend importing the necessary helper from the Rust framework:

use core::convert::TryInto;

Then, in the method take_usize , we can convert the byte array into a

usize integer by doing:

u32::from_be_bytes(slice[28..32].try_into().unwrap()) as usize

32

C11: Unnecessarily complex and misleading processing of 32-byte

array in "head_append”

Severity: Minor Status: Fixed

Location

interchain-token-service/src/abi.rs
head_append

Description

Current behavior: In the method head_append , to encode a 32-byte array, the

method fixed_bytes_append is used. However, using this method is

unnecessarily complex and misleading:

Unnecessarily complex: fixed_bytes_append implements logic to handle

arrays of dynamic size, by processing the array in batches of 32 bytes.

However, there is no need for such logic when dealing with a fixed-size 32-

byte array. Instead, we could simply convert the array directly into a

ManagedBuffer using the helper as_managed_buffer from the Rust

framework.

Misleading: fixed_bytes_append pads the array on the right so that the

number of bytes is a multiple of 32. This is misleading when dealing with

arrays of fixed sizes, as the ABI encoding of fixed-size data should not

perform any padding on the right. Fortunately, no padding would occur in

practice for a 32-byte array (since 32 is a multiple of 32).

Expected behavior: The processing of 32-byte arrays in head_append should

be as simple as possible, and use helpers from the Rust framework whenever

possible, instead of custom methods designed to handle arrays of dynamic

size.

Recommendation

In the method head_append , we recommend replacing the line

Token::Bytes32(data) =>
 Self::fixed_bytes_append(acc, data.as_managed_buffer())

33

with the line:

Token::Bytes32(data) => acc.append(data.as_managed_buffer())

34

C12: Function "ascii_to_u8" is unnecessarily complex

Severity: Minor Status: Fixed

Location

interchain-token-service/src/constants.rs

Description

Current behavior: The function ascii_to_u8 converts a string representing a

token's decimals into an actual u8 integer. However, the conversion is done

in an unnecessarily complex way, i.e. by loading batches of 32 bytes:

fn ascii_to_u8(&self) -> u8 {
 let mut result: u8 = 0;
 self.for_each_batch::<32, _>(|batch| {
 for &byte in batch {
 if byte == 0 {
 break;
 }
 result *= 10;
 result += (byte as char).to_digit(16).unwrap() as u8;
 }
 });
 result
}

Namely, the decimals of a token on MultiversX must be between 0 and 18,

hence the decimals’ string representation is encoded on at most 2 bytes. In

turn, it is unnecessary to parse the string by loading batches of 32 bytes as if

the length of the string could be arbitrarily big.

Expected behavior: The function ascii_to_u8 can be simplified and should

be simplified.

Recommendation

We recommend simplifying the method ascii_to_u8 as follows:

35

fn ascii_to_u8(&self) -> u8 {
 let mut result: u8 = 0;
 let mut byte_array = [0u8; 2];
 let _ = self.load_slice(0, &mut byte_array);
 for byte in byte_array {
 result *= 10;
 result += (byte as char).to_digit(16).unwrap() as u8;
 }
 result
}

36

C13: Unnecessary argument "initial_offset" in "raw_abi_decode”

Severity: Minor Status: Fixed

Location

interchain-token-service/src/abi.rs
raw_abi_decode

Description

The argument initial_offset of the method raw_abi_decode is useless,

because it is always 0 when raw_abi_decode is called, and so it is

equivalent to having no initial offset at all.

Recommendation

We recommend deleting the argument initial_offset from the method

raw_abi_decode .

37

C14: Unnecessary endpoint "call_contract_with_interchain_token”

Severity: Minor Status: Fixed

Location

interchain-token-service/src/user_functions.rs
call_contract_with_interchain_token

Description

The endpoint call_contract_with_interchain_token is unnecessary, as it is

a weaker version of the endpoint interchain_transfer : the former is

restricted to the ContractCall version, while the latter can be used with any

version.

Recommendation

We recommend deleting the endpoint

call_contract_with_interchain_token .

38

C15: Unnecessarily big cap values used in helper "abi_decode" for

structs “SendToHubPayload” and “DeployInterchainTokenPayload”

Severity: Minor Status: Fixed

Location

interchain-token-service/src/abi_types.rs

Description

Current behavior: For each struct that needs to be decoded from the ABI

format, there is a decoding method abi_decode . It takes a payload as

argument, decodes one by one each field of the struct, and places these fields

in an array result of fixed size given by a cap CAP . For example:

impl AbiEncodeDecode for SendToHubPayload {
 ...
 fn abi_decode(payload: ManagedBuffer) -> Self {
 // Initialize the "result" array with cap 4
 let mut result = ArrayVec::<Token, CAP 4>::new();

 // Decode each field from payload in the "result" array
 Self::raw_abi_decode(payload, &mut result);

 // Pop each field from the "result" array
 let payload = result.pop();
 let destination_chain = result.pop();
 let message_type = result.pop();

 SendToHubPayload {message_type, destination_chain, payload}
 }
}

However, for the following structs, the cap is unnecessarily big, i.e. bigger than

the number of fields in the struct:

The struct SendToHubPayload has 3 fields, but the cap is 4.

The struct DeployInterchainTokenPayload has 6 fields, but the cap is 9.

In turn, these unnecessarily big caps are slightly misleading for the code

reader.

39

Expected behavior: In each method abi_decode associated to a struct to

decode from the ABI format, the array result should have a size capped to

the number of fields of the struct, as this is the exact number of entries that

this array is expected to contain.

Recommendation

Both for the structs SendToHubPayload and DeployInterchainTokenPayload ,

in their method abi_decode , we suggest correcting the cap of the array

result so that it matches the number of fields in the struct.

40

C16: The struct "SendToHubPayload" is used for receiving payloads

from the Axelar Hub

Severity: Minor Status: Fixed

Location

interchain-token-service/src/executable.rs

Description

Current behavior: The same struct SendToHubPayload is used both for

outgoing interchain calls to the Axelar Hub, and incoming interchain calls from

the Axelar Hub.

Therefore, the name of the struct is confusing when dealing with incoming

interchain calls, and also the struct's field destination_chain is confusing

when used to represent the source blockchain in the method

get_execute_params :

fn get_execute_params(...) {
 ...
 // Decoding an incoming payload as if it was an outgoing payload
 let data = SendToHubPayload::<Self::Api>::abi_decode(payload);
 ...
 // "destination_chain" is in fact the original source chain
 require(self.is_trusted_address(data.destination_chain, ...));
 ...
 return (message_type, data.destination_chain, data.payload)
}

Expected behavior: To avoid confusions between outgoing and incoming

interchain calls, a distinct struct should be introduced for each type of call.

This is the convention taken on other blockchains integrated in Axelar. For

example:

In Stellar, different structs SendToHub and ReceiveFromHub are used for

outgoing and incoming calls (link).

In Solidity, transfers are not represented as structs but rather as tuples, and

the variable names clearly reflect whether the call is outgoing or incoming.

For example, for outgoing calls, the destination blockchain is referred to as

https://github.com/axelarnetwork/axelar-amplifier-stellar/blob/804c962a667a7889c447decf8155c4f56c7b1bdb/contracts/stellar-interchain-token-service/src/abi.rs/#/L40-L50

41

destinationChain (link), while for incoming calls, the source blockchain is

referred to as originalSourceChain (link).

Recommendation

We recommend introducing a struct ReceiveFromHub for incoming interchain

transfers:

struct ReceiveFromHub {
 message_type: BigUint,
 original_source_chain: ManagedBuffer,
 payload: ManagedBuffer
}

https://github.com/axelarnetwork/interchain-token-service/blob/da0df87e68840e31d112b1684b7591b1e53c0c75/contracts/InterchainTokenService.sol/#L847
https://github.com/axelarnetwork/interchain-token-service/blob/da0df87e68840e31d112b1684b7591b1e53c0c75/contracts/InterchainTokenService.sol/#L911

42

C17: Endpoint "invalid_token_manager_address" has misleading

name and return type

Severity: Minor Status: Fixed

Location

interchain-token-service/src/proxy_its.rs
invalid_token_manager_address

Description

Current behavior: The endpoint invalid_token_manager_address returns the

Token Manager of a token if it exists, or the zero address if there is no such

Token Manager. Therefore:

The endpoint’s name is misleading, because the endpoint does not return

information about the validity of the argument token_id .

The endpoint’s return type is misleading, because the zero address is a

valid address on MultiversX, hence it does not explicitly signal the absence

of a Token Manager.

Expected behavior: The name and return type of an endpoint should reflect

the purpose of this endpoint.

Recommendation

We recommend renaming the endpoint invalid_token_manager_address e.g.

into get_opt_token_manager_address , and changing its return type to

Option<ManagedAddress> .

Consequently, the endpoints deploy_interchain_token and the method

check_token_minter in the ITS Factory should be adapted to handle this new

return type.

43

C18: Inconsistent logic to pay gas for interchain calls with ESDT and

with EGLD

Severity: Minor Status: Fixed

Location

interchain-token-service/src/proxy_gmp.rs
gas_service_pay_native_gas_for_contract_call

Description

Current behavior: In the method gas_service_pay_gas_for_contract_call ,

the logic to pay gas for outgoing interchain calls is not the same whether the

gas is paid in ESDT or in EGLD:

For an ESDT, the token is directly forwarded to an endpoint of the Gas

Service smart contract,

For EGLD, a helper function

gas_service_pay_native_gas_for_contract_call is called, which

forwards the EGLD to an endpoint of the Gas Service smart contract. Note

that this helper is not used anywhere else.

However, there is no reason for treating the two cases differently.

Expected behavior: The logic to pay gas should be consistent whether the gas

is paid in ESDT or in EGLD.

Recommendation

In the method gas_service_pay_gas_for_contract_call , whether the

payment is an ESDT or is EGLD, we recommend directly forwarding it to the

Gas Service smart contract.

In turn, we can delete the helper function

gas_service_pay_native_gas_for_contract_call .

44

C19: Useless "sender" argument in function "interchain_token_id”

Severity: Minor Status: Fixed

Location

interchain-token-service/src/user_functions.rs
interchain_token_id

Description

The argument sender in the endpoint interchain_token_id is unnecessary,

because each time the endpoint is called, this argument is the zero address.

Indeed, all tokens being deployed on MultiversX are deployed through the ITS

Factory, and in this case, the sender used to compute the interchain token ID

is the zero address.

Note: The argument sender was introduced to mimic the Solidity code.

There, the argument used to be useful when anyone (not only the ITS Factory)

was allowed to deploy a token.

Recommendation

We suggest removing the argument sender from the endpoint

interchain_token_id . Then, the endpoint would build the interchain token ID

simply by doing:

Hash256("its-interchain-token-id"@salt)

Moreover, the issue C20: No explicit check that the caller of "link_token" is the

ITS Factory must also be solved, i.e. we should explicitly check that the caller

is the ITS Factory in the endpoint link_token .

Indeed, there is currently no such explicit check, but only an implicit one: since

interchain_token_id depends on the token’s deployer sender which can

only be the ITS Factory, link_token would fail for any other caller. As we

would now remove the argument sender , an explicit check in link_token
becomes necessary, to prevent anyone from being able to link an existing

token he did not created to other blockchains.

45

C20: No explicit check that the caller of "link_token" is the ITS

Factory

Severity: Minor Status: Fixed

Location

interchain-token-service/src/user_functions.rs
link_token

Description

Current behavior: In the endpoint link_token for linking a custom token to a

destination blockchain, there is no explicit check that the caller is the ITS

Factory.

Fortunately, if the caller is not the ITS Factory, the transaction would fail, but

this is for a subtle reason:

Only the ITS Factory can register new token IDs,

When new token IDs are registered, they are derived from the address of

the caller, which by the point above must be the ITS Factory,

When link_token is called, the ID of the token to link is similarly derived

from the caller address. Therefore, if the caller is not the ITS Factory, it

would lead to a non-existing token ID, and the transaction would fail.

However, the absence of an explicit check could confuse the code reader and

heightens the risk of introducing errors in future modifications of the code.

Expected behavior: Users should deploy and link tokens only via the ITS

Factory. Therefore, the endpoint link_token should require that the caller is

the ITS Factory.

Recommendation

In the endpoint link_token , we recommend adding an explicit check that the

caller is the ITS Factory.

46

C21: Misleading variable name "destination_address”

Severity: Minor Status: Fixed

Location

interchain-token-service/src/proxy_gmp.rs
get_call_params

Description

In the method get_call_params , the variable name destination_address is

used twice, and the 1st occurrence is misleading because it is used not for an

address, but for a mapper which stores an address.

let destination_address = self.trusted_address(destination_chain);
require!(!destination_address.is_empty(), "Untrusted chain");
let destination_address = destination_address.get();

Recommendation

In the method get_call_params , we recommend renaming the 1st variable

currently named destination_address , e.g. into

destination_address_mapper .

47

C22: Unused methods, event and struct

Severity: Minor Status: Fixed

Description

The following are unused:

The method with_every_role ,

The method gateway_is_message_executed ,

The event emit_standardized_token_deployed_event ,

The struct StandardizedTokenDeployedEventData .

Recommendation

We recommend deleting the method with_every_role , the method

gateway_is_message_executed , the event

emit_standardized_token_deployed_event , and the struct

StandardizedTokenDeployedEventData .

48

C23: Obsolete comment in "init”

Severity: Minor Status: Fixed

Location

interchain-token-service/src/lib.rs
init

Description

The following comment in init is obsolete:

// from _setup function below

Indeed, the function _setup is not present in the code, rather it is a helper in

the Solidity code of ITS.

Recommendation

We recommend deleting the obsolete comment from init .

