
1

Security Audit Report

Axelar mvx-interchain-token-
service-proxy

MultiversX smart contract

by
on April 21, 2025

2

Table of Contents

Disclaimer 3

Terminology 3

Objective 4

Audit Summary 5

Inherent Risks 6

Code Issues & Recommendations 7

C1: Failed smart contract calls can’t be retried 7

C2: The owner can’t protect its users against too small gas for smart contract

calls

9

C3: Typo in comment 10

3

Disclaimer
The report makes no statements or warranties, either expressed or implied,

regarding the security of the code, the information herein or its usage. It also

cannot be considered as a sufficient assessment regarding the utility, safety

and bugfree status of the code, or any other statements.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

Terminology
Code: The code with which users interact.

Inherent risk: A risk for users that comes from a behavior inherent to the

code's design.

Inherent risks only represent the risks inherent to the code's design, which are

a subset of all the possible risks. No inherent risk doesn’t mean no risk. It only

means that no risk inherent to the code's design has been identified. Other kind

of risks could still be present. For example, the issues not fixed incur risks for

the users, or the upgradability of the code might also incur risks for the users.

Issue: A behavior unexpected by the users or by the project, or a practice that

increases the chances of unexpected behaviors to appear.

Critical issue: An issue intolerable for the users or the project, that must be

addressed.

Major issue: An issue undesirable for the users or the project, that we strongly

recommend to address.

Medium issue: An issue uncomfortable for the users or the project, that we

recommend to address.

Minor issue: An issue imperceptible for the users or the project, that we advise

to address for the overall project security.

4

Objective
Our objective is to share everything we have found that would help assessing

and improving the safety of the code:

1. The inherent risks of the code, labelled R1, R2, etc.

2. The issues in the code, labelled C1, C2, etc.

3. The issues in the testing of the code, labelled T1, T2, etc.

4. The issues in the other parts related to the code, labelled O1, O2, etc.

5. The recommendations to address each issue.

5

Audit Summary

Initial scope

Repository: https://github.com/multiversx/sc-axelar-cgp-rs

Commit: ac33c60b737ef0c212adf6e14646815b777e35d4
MultiversX smart contract path: ./interchain-token-service-proxy/

Final scope

Repository: https://github.com/multiversx/sc-axelar-cgp-rs

Commit: b863a1ba7fe8180e63961f721a63c6d53d818137
MultiversX smart contract path: ./interchain-token-service-proxy/

1 inherent risk in the final scope

0 issue in the final scope

3 issues reported in the initial scope and 0 remaining in the final scope:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 1 0 0 0 0 0

Major 0 0 0 0 0 0

Medium 1 0 0 0 0 0

Minor 1 0 0 0 0 0

https://github.com/multiversx/sc-axelar-cgp-rs
https://github.com/multiversx/sc-axelar-cgp-rs

6

Inherent Risks

R1: Users can’t get back the tokens from smart contract calls which

are not successfully executed.

This is because there is no refunding mechanism implemented in the Proxy.

In particular, if a user’s incoming interchain transfer going through the Proxy is

never successfully executed, then the user won’t ever get back his tokens.

7

Code Issues & Recommendations

C1: Failed smart contract calls can’t be retried

Severity: Critical Status: Fixed

Location

interchain-token-service-proxy/src/lib.rs

Description

Current behavior: When the Proxy processes an incoming interchain transfer

with smart contract call, if the call fails, then it can’t be retried.

More precisely, when the ITS forwards an incoming interchain token transfer to

the Proxy, in order to call the endpoint executeWithInterchainToken of the

destination smart contract, the call is performed asynchronously. Then, if the

call fails, in the callback the user’s tokens are simply kept in the Proxy, and

there is no endpoint to retry the call.

In particular, the call to the destination smart contract might fail for any reason,

e.g. due to a temporary logical error in the destination smart contract or due to

insufficient gas. However, after one failure, the Proxy does not allow to perform

the call again, even under conditions where it could in principle be executed

successfully.

Expected behavior: Users should be allowed to retry executing incoming

interchain transfers with smart contract calls, as it would significantly increase

the chances that eventually the call will be successfully executed, and that the

users’ tokens will be spent as intended. Indeed, one failure of a smart contract

call at a specific time and under specific conditions does not mean that the call

can’t be successful at a later time and under different conditions.

Worst consequence: A user loses the tokens of his interchain transfer because

the smart contract call failed only once.

8

Moreover, when combined with another issue of this report, C2: The owner

can’t protect its users against too small gas for smart contract calls, this issue

allows an attacker to stuck the tokens of users’ incoming interchain transfers

going through the Proxy. For this, the malicious actor would execute users’

interchain transfers with insufficient gas for the smart contract call.

Example: An interchain transfer of 10000 USDC is made and forwarded to the

Proxy, in order to perform a swap on xExchange for EGLD, with a slippage

protection. At the time this call is executed, it fails as it would lead to a too

small amount of EGLD, thanks to the slippage protection. A few hours later, the

user observes that a swap would now pass the slippage protection, however

he can’t attempt to re-execute the swap, and his 10000 USDC are stuck in the

smart contract.

Recommendation

We recommend allowing users retrying the execution of failed incoming

interchain transfers with smart contract calls.

For this:

We modify the storage failed_calls such that it records all the

necessary information of a call:

fn failed_calls(
 source_chain: ManagedBuffer,
 message_id: ManagedBuffer,
 source_address: ManagedBuffer,
 data: ManagedBuffer,
 token_id: TokenId
) -> SingleValueMapper<(EgldOrEsdtTokenIdentifier, BigUint)>;

In execute_with_interchain_token , if the caller is not ITS, we require that

the call is recorded in failed_calls , and that no tokens are received.

Then, we clear failed_calls and execute the call.

9

C2: The owner can’t protect its users against too small gas for smart

contract calls

Severity: Medium Status: Fixed

Location

interchain-token-service-proxy/src/lib.rs

Description

Current behavior: The owner of the Proxy can’t protect its users against too

small gas for calls to the endpoint executeWithInterchainToken of the

destination smart contract.

Indeed, the gas for this call can be arbitrary, as it is deduced from the gas

provided by the caller, which can be arbitrary. If the gas is too low, it would

make the call fail.

Expected behavior: The owner should be able to guarantee that enough gas is

provided to execute users’ smart contract calls.

Worst consequence: Let’s assume that failed executions can be retried, i.e.

that the issue C1: Failed smart contract calls can’t be retried has been resolved.

Even in this case, an attacker might prevent an incoming interchain transfer

with a call to a smart contract on a different shard from being executed over an

arbitrarily long period of time. For this, he would execute the call with

insufficient gas, and repeat this each time the callback is reached.

Note however that, in order to perform such an attack, the attacker would need

to be the first to re-execute the interchain transfer each time the callback is

reached.

Recommendation

We recommend introducing a new storage min_gas_for_execution that the

owner would set in init and through a dedicated owner endpoint.

Then, in the endpoint execute_with_interchain_token , we would start by

verifying that the gas left is at least min_gas_for_execution .

10

C3: Typo in comment

Severity: Minor Status: Fixed

Location

interchain-token-service-proxy/src/lib.rs
execute_callback

Description

In the method execute_callback , there is a typo “your a” in the following

comment:

// that would be relevant for a your dApp

Recommendation

We recommend correcting the comment.

