
1

Security Audit Report

Axelar mvx-interchain-token-
factory

MultiversX smart contract

by
on April 21, 2025

2

Table of Contents

Disclaimer 3

Terminology 3

Objective 4

Audit Summary 5

Code Issues & Recommendations 6

C1: "deploy_remote_token_callback" can fail and user loses gas payment for

interchain call

6

C2: Initial supply might be minted after initialization of the token 8

C3: ESDT tokens are accepted in "deploy_interchain_token" but are unused

and can be lost

10

C4: Token might be issued with name and ticker different from the ones

asked by the user

12

C5: Remote deployment can be made with destination minter that was not

asked by the user

13

C6: EGLD can't be registered as a custom token 15

C7: Unclear separation between deployment steps in

"deploy_interchain_token”

17

C8: Function "ascii_to_u8" is unnecessarily complex 19

C9: Unnecessarily complex logic to extract ticker from token identifier 21

C10: Inconsistent and misleading way to not specify address argument 22

C11: No sanity check that a token is registered in Token Manager before

registering on other blockchains

23

C12: Unused functions "its_deployed_token_manager" and

"token_manager_token_identifier”

25

3

Disclaimer
The report makes no statements or warranties, either expressed or implied,

regarding the security of the code, the information herein or its usage. It also

cannot be considered as a sufficient assessment regarding the utility, safety

and bugfree status of the code, or any other statements.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

Terminology
Code: The code with which users interact.

Inherent risk: A risk for users that comes from a behavior inherent to the

code's design.

Inherent risks only represent the risks inherent to the code's design, which are

a subset of all the possible risks. No inherent risk doesn’t mean no risk. It only

means that no risk inherent to the code's design has been identified. Other kind

of risks could still be present. For example, the issues not fixed incur risks for

the users, or the upgradability of the code might also incur risks for the users.

Issue: A behavior unexpected by the users or by the project, or a practice that

increases the chances of unexpected behaviors to appear.

Critical issue: An issue intolerable for the users or the project, that must be

addressed.

Major issue: An issue undesirable for the users or the project, that we strongly

recommend to address.

Medium issue: An issue uncomfortable for the users or the project, that we

recommend to address.

Minor issue: An issue imperceptible for the users or the project, that we advise

to address for the overall project security.

4

Objective
Our objective is to share everything we have found that would help assessing

and improving the safety of the code:

1. The inherent risks of the code, labelled R1, R2, etc.

2. The issues in the code, labelled C1, C2, etc.

3. The issues in the testing of the code, labelled T1, T2, etc.

4. The issues in the other parts related to the code, labelled O1, O2, etc.

5. The recommendations to address each issue.

5

Audit Summary

Initial scope

Repository: https://github.com/multiversx/sc-axelar-cgp-rs

Commit: 6ccc55290af7c2e3a14909e2bb331b113eef8ab3
MultiversX smart contract path: ./interchain-token-factory/

Final scope

Repository: https://github.com/multiversx/sc-axelar-cgp-rs

Commit: b863a1ba7fe8180e63961f721a63c6d53d818137
MultiversX smart contract path: ./interchain-token-factory/

0 inherent risk in the final scope

0 issue in the final scope

12 issues reported in the initial scope and 0 remaining in the final scope:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 0 0 0 0 0 0

Major 0 0 0 0 0 0

Medium 6 0 0 0 0 0

Minor 6 0 0 0 0 0

https://github.com/multiversx/sc-axelar-cgp-rs
https://github.com/multiversx/sc-axelar-cgp-rs

6

Code Issues & Recommendations

C1: "deploy_remote_token_callback" can fail and user loses gas

payment for interchain call

Severity: Medium Status: Fixed

Location

interchain-token-factory/src/proxy.rs
deploy_remote_token_callback

Description

Current behavior: When performing a token deployment on a destination

blockchain, an asynchronous call to the ESDT System smart contract is made

to retrieve the token's name, ticker and decimals, and then in the callback we

register an interchain call to the ITS Hub.

However, the callback deploy_remote_token_callback might fail, and this

would make the user lose all the tokens that were provided for paying the

interchain call.

Namely, in deploy_remote_token_callback , there are requirements that

The destination blockchain is trusted,

The destination blockchain is different than MultiversX,

The destination address is trusted,

The ITS is not be paused.

Therefore, the callback would fail if any of these properties does not hold.

Expected behavior: The callback deploy_remote_token_callback should

always succeed, so that either the interchain call is executed, or the user gets

back the gas tokens he provided for the interchain call.

Recommendation

7

We recommend removing all the sources of failure from the callback

deploy_remote_token_callback . For this, if the following properties do not

hold, instead of failing, we would simply send back the gas tokens to the user

and return:

The destination blockchain is not trusted,

The destination blockchain is MultiversX,

The destination address is not trusted,

The ITS is paused.

8

C2: Initial supply might be minted after initialization of the token

Severity: Medium Status: Fixed

Location

interchain-token-factory/src/lib.rs
deploy_interchain_token

Description

Current behavior: The initial supply of a token might be minted after the

completion of the token’s initialization—that is, after the Token Manager was

deployed, the token was issued, and the initial supply (if any) was minted.

Namely, even if the initialization is complete, the initialization endpoint

deploy_interchain_token would not fail in the special case where the ITS

Factory has the minter role, and in this case it would mint the supply given as

initial_supply argument.

Here are situations in which the ITS Factory would have the minter role

although the initialization was complete:

When the initialization of the token is finalized, the endpoint

deploy_interchain_token forwards the minter role to the address given

as minter argument, however this address could be that of the ITS

Factory itself.

If the minter is another address, it could always transfer the minter role back

to the ITS Factory at any later time.

In particular, the initial supply of the token might be minted multiple times.

Expected behavior: The initial supply of a token should be minted at

initialization when setting up the token. This is to ensure that the initial supply

is minted before users start interacting with the token, and that it is minted at

most once.

Recommendation

9

In the endpoint deploy_interchain_token , at the last step of the initialization

of a token, we suggest recording that the token is initialized in a new

UnorderedSetMapper initialized_tokens . Then, if

deploy_interchain_token is called with a token already present in

initialized_tokens , then the endpoint would fail.

Whether the last step is being executed in deploy_interchain_token can be

detected as follows.

Case 1: If initial_supply == 0 , the last step is the 2nd step (issuing the

token), i.e. after we deployed the Token Manager.

Case 2: If initial_supply > 0 , the last step is the 3rd step (minting the initial

supply), i.e. after we issued the token.

require!(!self.initialized_tokens.contains(token_id));

let opt_token_id =
 self.token_manager_invalid_token_identifier(token_manager);
let is_last_step =
 (initial_supply == 0 && !token_manager.is_zero) ||
 (initial_supply > 0) && opt_token_id.is_some();
if is_last_step {
 self.initialized_tokens.insert(token_id);
}

10

C3: ESDT tokens are accepted in "deploy_interchain_token" but are

unused and can be lost

Severity: Medium Status: Fixed

Location

interchain-token-factory/src/lib.rs
deploy_interchain_token

Description

Current behavior: The endpoint deploy_interchain_token is payable in any

token, although it only uses EGLD for issuing the Token Manager’s token.

Moreover, in case the user sends ESDT tokens to the endpoint, he could lose

them. This is because:

The EGLD payment is obtained via self.call_value().egld_value() , and

there is no check on whether ESDT tokens were also received.

The deployment procedure occurs in 2 or 3 steps, and each step is

performed by re-calling the endpoint deploy_interchain_token . However,

only in the 2nd step of the deployment procedure (issuing the token), it is

checked that the EGLD amount is non-zero. This check incidentally ensures

that no ESDT tokens were received.

In the 1st and 3rd steps of the deployment procedure, there is a check that

the EGLD amount is 0, but this does not prevent ESDT tokens from being

received. In this case, ESDT tokens would be received and would simply

stay in the smart contract.

Expected behavior: The endpoint deploy_interchain_token should only be

payable in EGLD, because it only uses EGLD to issue the Token Manager’s

token, and does not need to receive any other token.

Worst consequence: Users send ESDT tokens to the endpoint

deploy_interchain_token and lose them.

Recommendation

11

We recommend making the endpoint deploy_interchain_token payable only

in EGLD, by using the annotation #[payable("EGLD")] .

12

C4: Token might be issued with name and ticker different from the

ones asked by the user

Severity: Medium Status: Fixed

Location

interchain-token-factory/src/lib.rs
deploy_interchain_token

Description

Current behavior: When a user issues a Native Interchain Token, in case the

name or ticker is incorrectly formatted, the transaction does not revert. Instead,

the name and ticker are normalized so that they comply with MultiversX

requirements. Therefore, the token might be issued with a name and ticker that

do not match the intent of the user.

This is because, in the endpoint deploy_interchain_token , no checks are

made on the name and ticker provided as arguments, rather they are

normalized by the methods to_normalized_token_name and

to_normalized_token_ticker .

Expected behavior: When a user deploys a Native Interchain Token, the token

should be issued with the exact name and ticker provided by the user.

Note: The normalization should remain for issuances coming from other

blockchains, as then the name and ticker might be in an incorrect format, and

the user on the source blockchain might have no control on it.

Recommendation

In the endpoint deploy_interchain_token , we recommend verifying that the

arguments symbol and name correspond to valid ESDT ticker and name

respectively. This can be done by verifying that they equal their normalization

through the methods to_normalized_token_name and

to_normalized_token_ticker .

13

C5: Remote deployment can be made with destination minter that

was not asked by the user

Severity: Medium Status: Fixed

Location

interchain-token-factory/src/lib.rs
deploy_remote_interchain_token_with_minter

Description

Current behavior: In the endpoint

deploy_remote_interchain_token_with_minter , even if the optional

argument destination_minter is not provided, i.e. there is no address

provided to be set as a minter on the destination chain, then it is still possible

that the interchain call is made with a destination minter.

This would happen if the argument minter is provided (i.e. a minter on the

source chain, MultiversX), as then the destination minter is automatically set to

this source minter:

if !minter.is_zero() {
 ...
} else {
 destination_minter = minter;
}

This means that the interchain call would be performed with a destination

minter that was not asked by the user, and there are two possible outcomes:

Either the remote deployment fails. This would happen on most blockchains

(e.g. EVM blockchains) because the address format there would be

incompatible with the MultiversX format, hence the address of the minter on

MultiversX would fail to be decoded to a valid address on the destination

blockchain. However, this might forever prevent deploying the token on that

destination blockchain again, because the Axelar Hub currently prevents

replaying token deployments, even if they did not succeed on the first trial.

14

Or the remote deployment succeeds. In this case an unintended minter

address would be set on that blockchain, and would forever be allowed to

mint arbitrary amounts of tokens.

Note: A similar approach was taken in the Solidity code (link), because at the

time of the implementation, only EVM blockchains integrated with Axelar,

which share the same address format. In this context, it was useful to

automatically use the same minter address on different blockchains, so that the

same private key can be used as a minter over different blockchains.

Expected behavior: A remote deployment should be performed with a

destination minter only if a destination minter was explicitly provided as

argument to the endpoint deploy_remote_interchain_token_with_minter .

Otherwise, the remote deployment should be performed without destination

minter.

Recommendation

In the endpoint deploy_remote_interchain_token_with_minter , in case the

optional argument destination_minter is not provided, we suggest

performing the remote deployment without destination minter.

https://github.com/axelarnetwork/interchain-token-service/blob/main/contracts/InterchainTokenService.sol#L1007https://github.com/axelarnetwork/interchain-token-service/blob/main/contracts/InterchainTokenFactory.sol#L290

15

C6: EGLD can't be registered as a custom token

Severity: Medium Status: Fixed

Location

interchain-token-factory/src/lib.rs
register_custom_token

Description

Current behavior: It is not possible to register EGLD as a custom token,

because the endpoint register_custom_token verifies that the token

identifier given as argument is a valid ESDT token identifier (using

is_valid_esdt_identifier), and EGLD is not an ESDT token.

Conversely, when the link is made from another blockchain, it would fail to link

to EGLD because in the method process_link_token_payload , it is also

checked that the token identifier is a valid ESDT token identifier.

Expected behavior: According to the Axelar team, it should be possible to

register EGLD as a custom token, as is already the case for all other fungible

tokens. This is because linking custom tokens is a feature provided by Axelar

for projects to be able to bridge existing tokens between different blockchains,

which is relevant for all tokens on MultiversX including EGLD.

Recommendation

We recommend allowing registrations of EGLD as a custom token. For this:

In the endpoint register_custom_token , we change the type of the

argument token_identifier from TokenIdentifier to

EgldOrEsdtTokenIdentifier , and perform the check that the token is a

valid ESDT token identifier only if it is not EGLD.

In the method process_link_token_payload , we decode the token

identifier from the interchain call’s payload as EgldOrEsdtTokenIdentifier
instead of TokenIdentifier , and perform the check that the token is a

valid ESDT token identifier only if it is not EGLD.

In addition, we update the ITS endpoint register_token_metadata so that it

also supports EGLD:

16

we change the type of the argument token_identifier from

TokenIdentifier to EgldOrEsdtTokenIdentifier , and perform the check

that the token is a valid ESDT token identifier only if it is not EGLD.

If the token is EGLD, instead of fetching the token decimals from the ESDT

System smart contract, we directly forward the EGLD decimals (i.e. 18) in

a message to the Axelar Hub.

Finally, we would add a test where EGLD is registered as a custom token and

where an outgoing interchain call is registered to link EGLD to another

blockchain. Conversely, we would add a test where an incoming interchain call

links a token from another blockchain to EGLD.

17

C7: Unclear separation between deployment steps in

"deploy_interchain_token”

Severity: Minor Status: Fixed

Location

interchain-token-factory/src/lib.rs
deploy_interchain_token

Description

Current behavior: Deploying a new token is done in 2 or 3 steps, each time by

calling the same endpoint deploy_interchain_token . However, the code of

deploy_interchain_token makes it unclear that the 1st and 2nd steps are

actually distinct. Namely, the code relies on Rust logical OR (||) evaluation

behavior to handle the first 2 deployment steps together:

if token_manager.is_zero() ||
 token_manager_invalid_token_identifier(token_manager).is_none() {
 ...
}

Mixing these conditions makes it harder to understand the code. Moreover, it

increases the risk of introducing errors in future changes: inverting the order of

the 2 conditions would make token deployments fail, because calling

token_manager_invalid_token_identifier would fail if

token_manager.is_zero() , i.e. if there is no Token Manager deployed yet.

Expected behavior: The deployment steps in the endpoint

deploy_interchain_token should be clearly separated, to make the code as

simple as possible and to reduce the risk of introducing errors in future code

changes.

Recommendation

In the endpoint deploy_interchain_token , we recommend explicitly

separating the distinct deployment steps:

18

// 1st transaction - deploy Token Manager
if token_manager.is_zero() {
 ...
 return token_id;
}

// 2nd transaction - deploy token
if token_manager_invalid_token_identifier(token_manager).is_none() {
 ...
 return token_id;
}

// 3rd transaction - mint token if needed
...

19

C8: Function "ascii_to_u8" is unnecessarily complex

Severity: Minor Status: Fixed

Location

interchain-token-factory/src/constants.rs
ascii_to_u8

Description

Current behavior: The function ascii_to_u8 converts a string representing a

token's decimals into an actual u8 integer. However, the conversion is done

in an unnecessarily complex way, i.e. by loading batches of 32 bytes:

fn ascii_to_u8(&self) -> u8 {
 let mut result: u8 = 0;
 self.for_each_batch::<32, _>(|batch| {
 for &byte in batch {
 if byte == 0 {
 break;
 }
 result *= 10;
 result += (byte as char).to_digit(16).unwrap() as u8;
 }
 });
 result
}

Namely, the decimals of a token on MultiversX must be between 0 and 18,

hence the decimals’ string representation is encoded on at most 2 bytes. In

turn, it is unnecessary to parse the string by loading batches of 32 bytes as if

the length of the string could be arbitrarily big.

Expected behavior: The function ascii_to_u8 can be simplified and should

be simplified.

Recommendation

We recommend simplifying the method ascii_to_u8 as follows:

20

fn ascii_to_u8(&self) -> u8 {
 let mut result: u8 = 0;
 let mut byte_array = [0u8; 2];
 let _ = self.load_slice(0, &mut byte_array);
 for byte in byte_array {
 result *= 10;
 result += (byte as char).to_digit(16).unwrap() as u8;
 }
 result
}

21

C9: Unnecessarily complex logic to extract ticker from token

identifier

Severity: Minor Status: Fixed

Location

interchain-token-factory/src/lib.rs
deploy_remote_interchain_token_raw

Description

In the method deploy_remote_interchain_token_raw , the ticker of the token

is extracted by performing unnecessarily complex byte operations:

let token_identifier_name = token_identifier.into_name();
let token_symbol = token_identifier_name
 .copy_slice(0, token_identifier_name.len() - 7)
 .unwrap();

Indeed, there is a Rust helper ticker that can be used directly to retrieve the

ticker from an ESDT token.

Recommendation

In the method deploy_remote_interchain_token_raw , we recommend

extracting the ticker of the ESDT token by using the dedicated helper from the

Rust framework:

let token_symbol = token_identifier.unwrap_esdt().ticker();

22

C10: Inconsistent and misleading way to not specify address

argument

Severity: Minor Status: Fixed

Location

interchain-token-factory/src/lib.rs

Description

Current behavior: In several endpoints of the ITS Factory, an address can be

optionally provided. However, if the user does not wish to specify an address,

the way to do so is inconsistent over endpoints and sometimes misleading:

In the endpoint deploy_remote_interchain_token_with_minter , the

argument destination_minter is of type

OptionalValue<ManagedBuffer> , therefore the user can provide a None
argument.

In the endpoint register_custom_token , the argument operator is

mandatory, i.e. is of type ManagedAddress , and if the user does not wish to

specify any operator, he would need to provide the zero address as

argument. Similarly for the argument minter of the endpoint

deploy_interchain_token .

In particular, the latter approach might be confusing since the user might not

know that providing the zero address is the way to specify no address.

Expected behavior: The way of making an address argument optional should

be consistent across endpoints, and should be as intuitive as possible.

Recommendation

We recommend changing the type of all address arguments which are optional

to OptionalValue<ManagedAddress> :

The argument operator of the endpoint register_custom_token ,

The argument minter of the endpoint deploy_interchain_token .

23

C11: No sanity check that a token is registered in Token Manager

before registering on other blockchains

Severity: Minor Status: Fixed

Location

interchain-token-factory/src/lib.rs
deploy_remote_interchain_token_raw

Description

Current behavior: The registration of a token on a destination blockchain can

only be performed if the registration is complete on MultiversX, but this is for a

subtle, non-explicit reason.

Namely, although it is explicitly checked that the Token Manager is already

deployed, there is no explicit check that a token is set in the Token Manager.

Fortunately, if the token is not set, then the remote registration fails, because in

the method deploy_remote_interchain_token_raw :

We read an empty EgldOrEsdtTokenIdentifier storage when calling

its_registered_token_identifier ,

Then, this token identifier is not recognized as EGLD when calling the

method is_egld , since this helper from the Rust framework returns true
only if the data field of the struct EgldOrEsdtTokenIdentifier is "EGLD-

000000".

The extraction of the ticker from an empty array of bytes fails:

let token_symbol = token_identifier_name
 .copy_slice(0, token_identifier_name.len() - 7)
 .unwrap();

However, this reasoning is subtle, and increases the risk of introducing errors

in future changes:

If the framework version is changed and in the new framework version, the

helper is_egld returns true when the data field of the struct

EgldOrEsdtTokenIdentifier is empty, then the registration to a

destination blockchain wouldn't fail any longer, and would record the EGLD

24

information (name, symbol and decimals) instead of the correct information,

on the destination blockchain.

If the ticker is not extracted in the same way, maybe the registration to a

destination blockchain would not fail any longer, but would be performed

with erroneous information, such as an empty name or symbol.

Expected behavior: There should be an explicit check that the registration is

finalized on MultiversX, in particular that a token is set in the Token Manager,

before we can perform the registration on other blockchains. This is to make

the code clearer, and reduce the risk of introducing errors in future changes.

Recommendation

In the method deploy_remote_interchain_token_raw , we recommend

verifying that the local registration of the token is finalized, by explicitly

checking that the token returned by the Token Manager view

registered_token_identifier is a valid token, i.e. by calling the helper

is_valid from the Rust framework.

25

C12: Unused functions "its_deployed_token_manager" and

"token_manager_token_identifier”

Severity: Minor Status: Fixed

Location

interchain-token-factory/src/proxy.rs

Description

The methods its_deployed_token_manager and

token_manager_token_identifier are unused.

Recommendation

We recommend deleting the unused methods its_deployed_token_manager
and token_manager_token_identifier .

