
1

Security Audit Report

Axelar mvx-governance (2)
MultiversX smart contract

by
on April 21, 2025

2

Table of Contents

Disclaimer 3

Terminology 3

Objective 4

Audit Summary 5

Inherent Risks 6

Code Issues & Recommendations 7

C1: Proposal can be resubmitted although it is not yet successfully executed

or cancelled

7

C2: Proposal should be cancellable as long as it is not successfully executed 9

3

Disclaimer
The report makes no statements or warranties, either expressed or implied,

regarding the security of the code, the information herein or its usage. It also

cannot be considered as a sufficient assessment regarding the utility, safety

and bugfree status of the code, or any other statements.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

Terminology
Code: The code with which users interact.

Inherent risk: A risk for users that comes from a behavior inherent to the

code's design.

Inherent risks only represent the risks inherent to the code's design, which are

a subset of all the possible risks. No inherent risk doesn’t mean no risk. It only

means that no risk inherent to the code's design has been identified. Other kind

of risks could still be present. For example, the issues not fixed incur risks for

the users, or the upgradability of the code might also incur risks for the users.

Issue: A behavior unexpected by the users or by the project, or a practice that

increases the chances of unexpected behaviors to appear.

Critical issue: An issue intolerable for the users or the project, that must be

addressed.

Major issue: An issue undesirable for the users or the project, that we strongly

recommend to address.

Medium issue: An issue uncomfortable for the users or the project, that we

recommend to address.

Minor issue: An issue imperceptible for the users or the project, that we advise

to address for the overall project security.

4

Objective
Our objective is to share everything we have found that would help assessing

and improving the safety of the code:

1. The inherent risks of the code, labelled R1, R2, etc.

2. The issues in the code, labelled C1, C2, etc.

3. The issues in the testing of the code, labelled T1, T2, etc.

4. The issues in the other parts related to the code, labelled O1, O2, etc.

5. The recommendations to address each issue.

5

Audit Summary

Initial scope

Repository: https://github.com/multiversx/sc-axelar-cgp-rs

Commit: 6ccc55290af7c2e3a14909e2bb331b113eef8ab3
MultiversX smart contract path: ./governance/

Final scope

Repository: https://github.com/multiversx/sc-axelar-cgp-rs

Commit: b863a1ba7fe8180e63961f721a63c6d53d818137
MultiversX smart contract path: ./governance/

1 inherent risk in the final scope

0 issue in the final scope

2 issues reported in the initial scope and 0 remaining in the final scope:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 0 0 0 0 0 0

Major 0 0 0 0 0 0

Medium 2 0 0 0 0 0

Minor 0 0 0 0 0 0

https://github.com/multiversx/sc-axelar-cgp-rs
https://github.com/multiversx/sc-axelar-cgp-rs

6

Inherent Risks

R1: The minimal time lock for proposals might be set to harmful

values.

This is because Axelar validators are allowed to set the minimal time lock to

any value, without any kind of protections, which could be harmful:

If the minimal time lock is too short, e.g. 0 seconds, then it would allow

executing some proposals as soon as they are submitted, leaving no time

for users to react to the implications of the proposal, or for cancelling the

proposal in case it was malformed or unwanted.

If the minimal time lock is too long, e.g. 1000 years, then no governance

proposals can ever be executed.

In practice however, the risk is low, because the choice of the minimal time

lock results from a consensus between multiple validators of the Axelar

blockchain.

Finally, the reason why Axelar does not implement a protection at the smart

contract level is to follow the same convention as all the Governance smart

contracts deployed on other chains.

7

Code Issues & Recommendations

C1: Proposal can be resubmitted although it is not yet successfully

executed or cancelled

Severity: Medium Status: Fixed

Location

governance/src/lib.rs

Description

Current behavior: A proposal can be submitted although the same proposal

was already submitted and is not yet successfully executed or cancelled.

Indeed:

For operator proposals, the same proposal can be resubmitted anytime

because no verification is performed when submitting such proposals.

For proposals with timelock, there is a check in the method

process_command that no timelock is currently set for the proposal,

however there is a special case where the timelock would not be set

although the proposal is not yet successfully executed or cancelled.

Namely, while the proposal is being asynchronously executed, the timelock

is temporarily cleared, and is only restored in the callback if the call has

failed. Therefore, while the asynchronous call is ongoing, it is possible to

resubmit the proposal.

This is problematic because the Governance smart contract only maintains at

most one copy of any given proposal, i.e. one copy for a given hash of the

proposal's data (information about the transfer and smart contract call).

Therefore, if the Axelar Governance has voted twice on the same proposal and

the 2nd instance is submitted while the 1st instance is not yet successfully

executed, then the proposal would be executed only once.

Expected behavior: As long as a proposal is not successfully executed or

cancelled, it should not be possible to resubmit the same proposal, because

8

the Governance smart contract can only maintain one copy of any given

proposal at the same time.

For this reason, in the Solidity implementation of ITS (link), a resubmission

would fail until the proposal is successfully executed or cancelled.

Recommendation

The solution recommended below also solves the issue C2: Proposal should be

cancellable as long as it is not successfully executed. It relies on the following

new storages:

timelock_proposals_submitted : The set of proposals with timelock

submitted in the smart contract.

operator_proposals_submitted : The set of operator proposals submitted

in the smart contract.

timelock_proposals_being_executed : The set of proposals with timelock

whose execution is currently ongoing.

operator_proposals_being_executed : The set of operator proposals

whose execution is currently ongoing.

Then:

1) When submitting a proposal, we require that it is not yet submitted and not

being executed, and mark it as submitted. Incidentally, for proposals with

timelock, we can remove the requirement that no timelock is already set.

2) When cancelling a proposal, we call a new helper remove_proposal : it

removes the proposal from the list of submitted proposals, and clears the

storages time_lock_eta (for proposals with timelock) or

operator_approvals (for operator proposals).

3) When executing a proposal, we require that it is submitted and not being

executed. Then, we mark it as being executed before the asynchronous call,

and unmark it in the callback, no matter if the asynchronous execution

succeeded or not.

Moreover, if it succeeded, then in the callback, we clear the proposal by calling

remove_proposal . In particular, we would not clear anymore the storages

time_lock_eta (for proposals with timelock) or operator_approvals (for

operator proposals) before the asynchronous call, and likewise we would not

restore them in the callback.

https://github.com/axelarnetwork/axelar-gmp-sdk-solidity/blob/7c9f52790fcc64de41cc9185ba33b984b2590638/contracts/utils/TimeLock.sol/#L44

9

C2: Proposal should be cancellable as long as it is not successfully

executed

Severity: Medium Status: Fixed

Location

governance/src/lib.rs

Description

Current behavior: If a cancellation command is submitted while a Governance

proposal is currently being executed, then the cancellation command would be

consumed, but if the execution of the proposal fails, then the proposal would

be considered as pending again, i.e. it would not be cancelled and it would be

possible to re-try its execution.

More precisely, the execution of a proposal happens through an asynchronous

call which can take a few blocks, and when the execution fails, the callback

restores the proposal's information, i.e. time_lock_eta (for normal proposal)

or operator_approvals (for operator proposal), no matter if a cancellation

command was executed in the meantime.

Moreover, once the cancellation command is executed, it is marked as

validated in the Gateway, thus this command can’t be executed again. Re-

doing a cancellation might then be heavy: the Axelar Governance would need

to reach consensus again and post a new cancellation command on

MultiversX.

Expected behavior: Proposals should be cancellable as long as they are not

successfully executed.

Worst consequence: A malicious user prevents the cancellation of a proposal

which performs a call to a smart contract on another shard. For this, he would

trigger the execution just before the cancellation is executed.

Example: At the end of the following sequence, a proposal’s cancellation is

consumed but the proposal was not cancelled.

1. The Axelar Governance submits a proposal in the Governance smart

contract. The proposal consists in calling a smart contract on another

shard.

10

2. The Axelar Governance decides to cancel the proposal, e.g. because it is no

longer relevant and the call to the target smart contract would fail.

3. However, just before the cancellation command is executed, someone

triggers the execution of the proposal.

4. While the asynchronous call is being executed, the cancellation command is

executed, and is consumed.

5. In the callback, as the asynchronous call has failed, the proposal is

restored. Therefore it is possible to re-execute the proposal.

6. However, the cancellation command can't be re-executed because it is

marked as validated in the Gateway.

Recommendation

We suggest following the recommendation of C1: Proposal can be resubmitted

although it is not yet successfully executed or cancelled, as it also resolves this

issue.

