
1

Security Audit Report

Axelar mvx-gateway
MultiversX smart contract

by
on April 21, 2025

2

Table of Contents

Disclaimer 3

Terminology 3

Objective 4

Audit Summary 5

Inherent Risks 6

Code Issues & Recommendations 8

C1: Can create a non-authorized set of signers with same hash as an

authorized set of signers

8

C2: Can create a non-authorized message with same hash as an authorized

message

11

C3: Typo in variable name "enfore_rotation_delay” 14

Test Issues & Recommendations 15

T1: Erroneous comment in test 'Message approved’ 15

3

Disclaimer
The report makes no statements or warranties, either expressed or implied,

regarding the security of the code, the information herein or its usage. It also

cannot be considered as a sufficient assessment regarding the utility, safety

and bugfree status of the code, or any other statements.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

Terminology
Code: The code with which users interact.

Inherent risk: A risk for users that comes from a behavior inherent to the

code's design.

Inherent risks only represent the risks inherent to the code's design, which are

a subset of all the possible risks. No inherent risk doesn’t mean no risk. It only

means that no risk inherent to the code's design has been identified. Other kind

of risks could still be present. For example, the issues not fixed incur risks for

the users, or the upgradability of the code might also incur risks for the users.

Issue: A behavior unexpected by the users or by the project, or a practice that

increases the chances of unexpected behaviors to appear.

Critical issue: An issue intolerable for the users or the project, that must be

addressed.

Major issue: An issue undesirable for the users or the project, that we strongly

recommend to address.

Medium issue: An issue uncomfortable for the users or the project, that we

recommend to address.

Minor issue: An issue imperceptible for the users or the project, that we advise

to address for the overall project security.

4

Objective
Our objective is to share everything we have found that would help assessing

and improving the safety of the code:

1. The inherent risks of the code, labelled R1, R2, etc.

2. The issues in the code, labelled C1, C2, etc.

3. The issues in the testing of the code, labelled T1, T2, etc.

4. The issues in the other parts related to the code, labelled O1, O2, etc.

5. The recommendations to address each issue.

5

Audit Summary

Initial scope

Repository: https://github.com/multiversx/sc-axelar-cgp-rs

Commit: 4b05e701ae050b6d10e936e43c289413d901a585
MultiversX smart contract path: ./gateway/

Final scope

Repository: https://github.com/multiversx/sc-axelar-cgp-rs

Commit: b863a1ba7fe8180e63961f721a63c6d53d818137
MultiversX smart contract path: ./gateway/

3 inherent risks in the final scope

0 issue in the final scope

4 issues reported in the initial scope and 0 remaining in the final scope:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 1 0 0 0 0 0

Major 0 0 0 0 0 0

Medium 1 0 0 0 0 0

Minor 1 1 0 0 0 0

https://github.com/multiversx/sc-axelar-cgp-rs
https://github.com/multiversx/sc-axelar-cgp-rs

6

Inherent Risks

R1: Users have no guarantee that the messages they send to the

Gateway will reach the target smart contract on the destination

chain.

This is because there is trust that sufficiently many Axelar validators sign the

message and that relayers forward the message:

Sufficiently many Axelar validators should sign the message, otherwise the

message won’t reach the Gateway on the destination chain.

Relayers should pick the message from the source chain and inform Axelar

validators about it, and once the message is signed by validators, relayers

should forward it to the destination chain. Therefore, in the absence of

relayers, the message would not reach the destination smart contract on the

destination chain.

R2: Users have no guarantee that the messages which are approved

in the Gateway are the messages which were effectively created by

accounts from another chain.

This is because a message can be approved in the Gateway if it is signed by

sufficiently many Axelar validators, and moreover there should be relayers to

forward the message from the source blockchain to Axelar network and then to

the Gateway. Therefore:

An erroneous message which was not created on another chain might be

approved if for any reason sufficiently many Axelar validators signed it, e.g.

if these validators made mistakes or were manipulated.

A valid message created on another chain might never reach the Gateway if

insufficiently many Axelar validators signed it, or if it was not forwarded by

relayers.

7

R3: The following parameters might be set to harmful values: the

size of a validator set, the number of past validator sets that can

approve messages, and the delay before which a new validator set

can be registered.

This is because Axelar validators are allowed to set these parameters to any

values, without any kind of protections, which could be harmful:

If the number of validators in a set is too big, then it might be too gas costly

to check all their signatures when approving messages. This could prevent

users’ messages from further being processed, until they are approved by

another set with a reasonable number of validators.

If the number of past validator sets that can approve messages is too big

(e.g. 1B), then even after adding numerous new validator sets, an old set,

possibly made of unwanted and malicious validators, would still be allowed

to approve messages.

If the delay before which a new validator set can be registered is too small

(e.g. 0 seconds), then new validators might be added too frequently,

making it hard to keep track of active validator sets: in this case relayers

might fail to make users’ message approved in the Gateway. By contrast, if

the delay is too big (e.g. 100 years), then the most recent validator set

would be unable to elect a new validator set in case it plans to go inactive

and needs to be replaced.

In practice however, the risk is low, because the choices of parameters result

from a consensus between multiple validators of the Axelar blockchain.

Finally, the reason why Axelar does not implement protections at the smart

contract level is to follow the same convention as all the Gateway smart

contracts deployed on other chains.

8

Code Issues & Recommendations

C1: Can create a non-authorized set of signers with same hash as an

authorized set of signers

Severity: Critical Status: Fixed

Location

gateway/src/auth.rs
get_signers_hash

Description

Current behavior: In the smart contract, a set of signers is identified by

applying the function get_signers_hash to the set of signers, represented by

the struct WeightedSigners . However, this identification can be manipulated,

i.e. it is possible to modify the set of signers such that get_signers_hash
produces the same result for the new set of signers and for the original one.

This is because the function get_signers_hash concatenates the top-level

encodings of signers’ information, and hashes the concatenation:

fn get_signers_hash(signers: WeightedSigners)
 let mut encoded = ManagedBuffer::new();

 // all type -> buffer conversions below are top-level encodings
 for signer in signers.signers.iter() {
 encoded.append(signer.signer.as_managed_buffer());
 encoded.append(signer.weight.to_bytes_be_buffer());
 }

 encoded.append(signers.threshold.to_bytes_be_buffer());
 encoded.append(signers.nonce.as_managed_buffer());

 self.crypto().keccak256(encoded)
}

Namely, the top-level encoding uniquely characterizes a value of a certain type

only if it is isolated from other values, but can be ambiguous for types with

9

dynamic length when concatenated with other values. In our context, it can be

possible to modify the number of signers in the set as well as the fields of type

BigUint (the signers’ weights and the quorum threshold) in a way that keeps

the same result after applying get_signers_hash . An example is provided

below.

The consequence is that, if a signer belonging to an authorized set of signers

gets compromised, then he will very likely be able to approve any message he

wants. This is because he could design an invalid set of signers that leads to

the same hash, in which the compromised signer has a huge weight and is the

only signer.

Expected behavior: The mechanism used to identify a set of signers should be

resilient against manipulations, meaning that it should be computationally

infeasible to find different sets of signers producing the same result after

applying the function get_signers_hash .

Worst consequence: A signer belonging to an authorized set of signers gets

compromised, and succeeds to approve and execute any message while

bypassing Axelar’s consensus mechanism. In turn, he can manipulate any

smart contract that integrates the Gateway. For example, the attacker could

drain all the tokens of Axelar's ITS smart contract.

Example: Consider a valid set of 3 signers Alice, Bob and Carol with addresses

[a, b, c] each with weight 100 , a threshold of 200 and a nonce of 1 .

Abbreviating “top-level encoding” as TL , the set of signers is recorded as the

hash of the concatenation:

TL(a)@TL(100)@TL(b)@TL(100)@TL(c)@TL(100)@TL(200)@TL(1) .

Let's say that Bob is malicious. He builds the following different set of signers:

The addresses are [a, b] ,

The weight of a is 100 ,

The weight of his address b is the (huge) BigUint obtained by

concatenating TL(100) , TL(c) , TL(100) as well as all bytes of

TL(200) except the last one,

The threshold is the last byte of TL(200) ,

The nonce is the same: 1 .

This set of signers produces the same concatenation as the initial one, hence

produces the same hash, and therefore is considered valid by the Gateway.

10

From now on, Bob can reach the threshold (which is very small) only with his

address b (which has a huge weight), and thus Bob can approve and execute

any message.

Note that a similar attack would be feasible if the malicious user was rather

Alice or Carol.

Recommendation

In get_signers_hash , when concatenating the fields of the struct

WeightedSigners , we suggest using a nested encoding rather than a top-

level encoding, by using the helper dep_encode from MultiversX Rust

framework. Indeed, the nested encoding is exactly designed to avoid ambiguity

when decoding multiple consecutive values. The way it works is by adding the

length of a value as a prefix to the value, in case its type has dynamic length.

Moreover, we recommend adding a unit test showing that the non-authorized

set of signers from the above example would not be considered as valid by the

Gateway.

https://github.com/multiversx/mx-sdk-rs/blob/2a594dbcd8b05a60af47ed3c5589abe123d7880d/data/codec/src/single/nested_en.rs/#L11
https://github.com/multiversx/mx-sdk-rs/blob/2a594dbcd8b05a60af47ed3c5589abe123d7880d/data/codec/src/single/nested_en.rs/#L11

11

C2: Can create a non-authorized message with same hash as an

authorized message

Severity: Medium Status: Fixed

Location

gateway/src/lib.rs
message_hash

Description

Current behavior: In the smart contract, a message is identified as follows:

The message’s information (source_chain , message_id ,

source_address , destination_address , payload_hash) is compressed

using the function message_hash : it hashes the concatenation of the top-

level encodings of the message’s information.

The command ID source_chain@"_"@message_id , where source_chain
and message_id are top-level encoded, is used as a key to store the

above hashed message’s information.

However, this identification can be manipulated, i.e. it is possible to modify the

message’s information in a way that the hash message_hash and the

command ID stay the same.

This is because of the use of top-level encoding, which uniquely characterizes

a value of a certain type only if it is isolated from other values, but can be

ambiguous for types with dynamic length when concatenated with other

values. In our context, we have the following constraints to modify the

message’s information while keeping the same message_hash and command

ID:

The first 2 information source_chain and message_id are of type

ManagedBuffer , whose top-level encoding can have arbitrary length.

Therefore these fields can be modified. However, they can be modified only

in a way that produces the same command ID:

source_chain@"_"@message_id . Therefore, the length of the concatenation

source_chain@message_id can’t be changed.

The last 2 information contract_address and payload_hash have top-

level encoding with fixed length, therefore they can't be modified, otherwise

12

message_hash would be different.

The 3rd information source_address is of type ManagedBuffer , however

it can't be modified. This is because from the previous points: (a) the first 2

information can be modified only in a way that preserves the length of

source_chain@message_id , (b) the last 2 information have fixed length.

Therefore, in order to keep message_hash unchanged, source_address
must stay the same.

It is thus possible to obtain a message that would be considered as approved

in the Gateway and could be executed, even if it was not effectively approved

by Axelar validators and was not effectively created on another chain.

In practice however, the constraints on how a message can be modified are

very limiting and likely prevent validating a harmful message:

For one thing, it is likely impossible to modify source_chain and

message_id in a way that doesn't change the concatenation

source_chain@"_"@message_id , because from Axelar’s conventions neither

source_chain and message_id are ever supposed to contain the "_"

character.

For another thing, destination_address and payload_hash can’t be

modified, so all the information about the message’s validation must be

unchanged, namely the smart contract which is allowed to validate the

message, the specific endpoint allowed to call the validation endpoint, and

the arguments that should be provided to that endpoint.

Expected behavior: The mechanism used to identify a message should be

resilient against manipulations, meaning that it should be computationally

infeasible to find different messages that produce the same command ID and

produce the same result after applying the function message_hash .

Recommendation

At a high-level, we recommend using nested encodings instead of top-level

encodings for defining message_hash and the command ID. Indeed, the

nested encoding is exactly designed to avoid ambiguities when decoding

multiple consecutive values. The way it works is by adding the length of a

value as a prefix to the value, in case its type has dynamic length.

More precisely, we recommend making the following changes:

13

1) In message_hash , we suggest nested encoding each message information

rather than top-level encoding it, by using the helper dep_encode from

MultiversX Rust framework.

2) We suggest making the command ID into a struct CommandId whose fields

are source_chain and message_id , as the fields of a struct are always

nested encoded:

pub struct CommandId {
 source_chain: ManagedBuffer,
 message_id: ManagedBuffer
}

fn messages(id: CommandId) -> SingleValueMapper<MessageState>;

We can then remove some unnecessary logic around command IDs: the

function message_to_command_id , and the field command_id from the events

message_approved_event and message_executed_event .

Note: In principle, modifying the command ID as above guarantees that

source_chain and message_id can’t be manipulated, and since no other

fields can be manipulated, it might seem unnecessary to also modify

message_hash , i.e. to also avoid using top-level encodings there. However,

using top-level encodings in the context of information identification is

generally a bad practice, in particular it could lead to manipulations in future

versions of the Gateway if there are modifications of the message’s information

or of the order in which information are concatenated. This is why we advise

using nested encodings in message_hash as well.

https://github.com/multiversx/mx-sdk-rs/blob/2a594dbcd8b05a60af47ed3c5589abe123d7880d/data/codec/src/single/nested_en.rs/#L11

14

C3: Typo in variable name "enfore_rotation_delay”

Severity: Minor Status: Fixed

Location

gateway/src/lib.rs
rotate_signers

Description

In the function rotate_signers , there is a typo in the variable’s name

enfore_rotation_delay .

Recommendation

In rotate_signers , we recommend correcting the typo by renaming the

variable into enforce_rotation_delay .

15

Test Issues & Recommendations

T1: Erroneous comment in test 'Message approved’

Severity: Minor Status: Fixed

Location

tests/gmp/gateway.test.ts

Description

In the test 'Message approved' of the file tests/gmp/gateway.test.ts, there is an

erroneous comment when checking the final state of the smart contract:

// Message was executed

Indeed, at this point of the test the message is approved, but not executed.

Recommendation

We suggest correcting the comment, e.g. into:

// Message was approved

