
1

Security Audit Report

Axelar mvx-gas-service
MultiversX smart contract

by
on April 21, 2025

2

Table of Contents

Disclaimer 3

Terminology 3

Objective 4

Audit Summary 5

Inherent Risks 6

Code Issues & Recommendations 7

C1: Mechanism to prevent withdrawing more fees than available does not

work when fee token repeated twice

7

C2: Owner of smart contract can't change collector 9

3

Disclaimer
The report makes no statements or warranties, either expressed or implied,

regarding the security of the code, the information herein or its usage. It also

cannot be considered as a sufficient assessment regarding the utility, safety

and bugfree status of the code, or any other statements.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

Terminology
Code: The code with which users interact.

Inherent risk: A risk for users that comes from a behavior inherent to the

code's design.

Inherent risks only represent the risks inherent to the code's design, which are

a subset of all the possible risks. No inherent risk doesn’t mean no risk. It only

means that no risk inherent to the code's design has been identified. Other kind

of risks could still be present. For example, the issues not fixed incur risks for

the users, or the upgradability of the code might also incur risks for the users.

Issue: A behavior unexpected by the users or by the project, or a practice that

increases the chances of unexpected behaviors to appear.

Critical issue: An issue intolerable for the users or the project, that must be

addressed.

Major issue: An issue undesirable for the users or the project, that we strongly

recommend to address.

Medium issue: An issue uncomfortable for the users or the project, that we

recommend to address.

Minor issue: An issue imperceptible for the users or the project, that we advise

to address for the overall project security.

4

Objective
Our objective is to share everything we have found that would help assessing

and improving the safety of the code:

1. The inherent risks of the code, labelled R1, R2, etc.

2. The issues in the code, labelled C1, C2, etc.

3. The issues in the testing of the code, labelled T1, T2, etc.

4. The issues in the other parts related to the code, labelled O1, O2, etc.

5. The recommendations to address each issue.

5

Audit Summary

Initial scope

Repository: https://github.com/multiversx/sc-axelar-cgp-rs

Commit: 4b05e701ae050b6d10e936e43c289413d901a585
MultiversX smart contract path: ./gas-service/

Final scope

Repository: https://github.com/multiversx/sc-axelar-cgp-rs

Commit: b863a1ba7fe8180e63961f721a63c6d53d818137
MultiversX smart contract path: ./gas-service/

1 inherent risk in the final scope

0 issue in the final scope

2 issues reported in the initial scope and 0 remaining in the final scope:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 0 0 0 0 0 0

Major 0 0 0 0 0 0

Medium 0 0 0 0 0 0

Minor 2 0 0 0 0 0

https://github.com/multiversx/sc-axelar-cgp-rs
https://github.com/multiversx/sc-axelar-cgp-rs

6

Inherent Risks

R1: Users might be refunded incorrectly, or too late, or even not

refunded at all for the excess of tokens they provided to cover gas

costs.

This is because the tokens deposited in the Gas Service smart contract are

fully managed by a single "collector" account, who might not perform the

refunding as expected in the following situations:

The collector could make mistakes: for example he could refund a wrong

address, a wrong amount, or a wrong token.

The collector could be manipulated: anyone with access to the collector’s

private key can send all the funds deposited in the Gas Service to any

address.

The collector might be inactive: for example he might have lost access to

his private key or might be unavailable, in which case refunds will not be

processed.

7

Code Issues & Recommendations

C1: Mechanism to prevent withdrawing more fees than available

does not work when fee token repeated twice

Severity: Minor Status: Fixed

Location

gas-service/src/lib.rs
collect_fees

Description

Current behavior: In the endpoint collect_fees , there is a mechanism that

skips the withdrawal of a given amount of tokens if this amount exceeds the

smart contract’s balance, in order to avoid a transaction failure when

transferring the tokens. However, this mechanism might not work when a token

appears twice in the list of tokens to withdraw.

Namely, when calling collect_fees , the collector specifies the list of tokens

and amounts of fees he wants to withdraw. For each token, if the amount is

bigger than the smart contract’s balance, then the withdrawal of this amount is

skipped, and then, at the end of collect_fees , all tokens are simultaneously

transferred to the collector.

for index in 0..tokens_length {
 ...
 if amount <= balance {
 payments.push(EsdtTokenPayment::new(token, 0, amount));
 }
}
if !payments.is_empty() {
 self.send().direct_multi(receiver, &payments);
}

However, if the same token appears twice in the list of tokens, then even if

amount <= balance holds for each individual amount, it is possible that the

8

sum of amounts exceeds balance , and in this case, the final transfer would

fail and the transaction would fail.

Expected behavior: The endpoint collect_fees should be successfully

executed even if some amounts to withdraw exceed the smart contract’s

balance. This is indeed a convention of the Gas Service smart contract

deployed on other chains, see for example the Solidity version.

Example: While there are 100 USDC in the smart contract, the collector

requests to withdraw 60 USDC twice, and the transaction fails because 60 +
60 = 120 > 100 .

Recommendation

We suggest reproducing the logic from the Solidity version: in collect_fees ,

instead of sending all ESDT payments at once at the end with direct_multi ,

we suggest sending each individual ESDT payment when it is processed using

direct_esdt .

https://github.com/axelarnetwork/axelar-cgp-solidity/blob/c208d84cd5681976240e7e94ce5a77cca71325c6/contracts/gas-service/AxelarGasService.sol/#L437
https://github.com/axelarnetwork/axelar-cgp-solidity/blob/c208d84cd5681976240e7e94ce5a77cca71325c6/contracts/gas-service/AxelarGasService.sol/#L437

9

C2: Owner of smart contract can't change collector

Severity: Minor Status: Fixed

Location

gas-service/src/lib.rs
set_gas_collector

Description

Current behavior: The owner can’t change the collector address, because only

the collector himself is allowed to call set_gas_collector .

Expected behavior: The owner should be able to change the collector address,

e.g. in case the collector becomes unreliable. On other blockchains, the owner

of the Gas Service smart contract is able to change the collector. For example,

on Ethereum, the owner would upgrade the Gas Service smart contract and

incidentally change the collector address.

Recommendation

We recommend allowing the owner to call the endpoint set_gas_collector .

