
1

Security Audit Report

Hatom controller (3)
MultiversX smart contract

by
on January 17, 2025

2

Table of Content

Disclaimer 3

Terminology 3

Objective 4

Audit Summary 5

Inherent Risks 6

Code Issues & Recommendations 8

C5: Liquidations and collateral withdrawals might exceed limits of gas and of

calls to built-in functions

8

3

Disclaimer
The report makes no statements or warranties, either expressed or implied,

regarding the security of the code, the information herein or its usage. It also

cannot be considered as a sufficient assessment regarding the utility, safety

and bugfree status of the code, or any other statements.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

Terminology
Code: The code with which users interact.

Inherent risk: A risk for users that comes from a behavior inherent to the

code's design.

Inherent risks only represent the risks inherent to the code's design, which are

a subset of all the possible risks. No inherent risk doesn’t mean no risk. It only

means that no risk inherent to the code's design has been identified. Other kind

of risks could still be present. For example, the issues not fixed incur risks for

the users, or the upgradability of the code might also incur risks for the users.

Issue: A behavior unexpected by the users or by the project, or a practice that

increases the chances of unexpected behaviors to appear.

Critical issue: An issue intolerable for the users or the project, that must be

addressed.

Major issue: An issue undesirable for the users or the project, that we strongly

recommend to address.

Medium issue: An issue uncomfortable for the users or the project, that we

recommend to address.

Minor issue: An issue imperceptible for the users or the project, that we advise

to address for the overall project security.

4

Objective
Our objective is to share everything we have found that would help assessing

and improving the safety of the code:

1. The inherent risks of the code, labelled R1, R2, etc.

2. The issues in the code, labelled C1, C2, etc.

3. The issues in the testing of the code, labelled T1, T2, etc.

4. The issues in the other parts related to the code, labelled O1, O2, etc.

5. The recommendations to address each issue.

5

Audit Summary

Initial scope

Repository: https://github.com/HatomProtocol/hatom-protocol

Commit: 5a7edf3a9c41eb9bb0ea98c1cd207fcfadfc9416

MultiversX smart contract path: ./controller/

Final scope

Repository: https://github.com/HatomProtocol/hatom-protocol

Commit: a4b070c0fa7f4eec2d6f3a825862ac29a0d7e960

MultiversX smart contract path: ./controller/

3 inherent risks in the final scope

1 issue in the final scope

9 issues reported in the initial scope and 1 remaining in the final scope:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 1 0 0 0 0 0

Major 3 0 0 0 0 0

Medium 4 0 0 1 0 0

Minor 1 0 0 0 0 0

https://github.com/HatomProtocol/hatom-protocol
https://github.com/HatomProtocol/hatom-protocol

6

Inherent Risks

R1: The solvency of a user might be incorrectly assessed, possibly

leading to bad debt or to the liquidations of solvent users.

This is because the solvency of a user depends on the value of his collateral

relative to the value of his debt, and the prices of these tokens are obtained

from Hatom Oracle, thus there is a risk as for any oracle that incorrect prices

are returned. Consequently:

Insolvent users might be deemed solvent: This would prevent the

liquidations of these users, and would also allow them to borrow assets or

withdraw collateral, possibly creating bad debt and preventing lenders from

withdrawing their funds.

Solvent users might be deemed insolvent: This could result in unexpected

liquidations, possibly making borrowers lose funds.

R2: Lenders have no guarantee that liquidations of insolvent

borrowers will be timely performed.

This is because liquidations must be triggered by external accounts, therefore

it is possible that at a time when some users are insolvent, there are no

sufficiently active liquidators to perform liquidations or that prices fail to be

obtained from the Oracle. This could in turn create bad debt and prevent

lenders in the affected money markets from fully withdrawing their funds.

R3: Users may not be able to claim rewards as HTM if they claim too

late.

This is because the contract has only a limited amount of rewards that can be

converted to HTM.

7

Example: Let’s say that if Alice claims now, she would be able to claim rewards

as HTM. However, if she rather decides to claim one week later, it is possible

that she may not be able to claim rewards as HTM anymore, for instance in the

following cases:

Other users have claimed rewards as HTM during the week, and there are

not enough remaining rewards that can be converted to HTM for Alice.

No other users claimed during the week, but Alice’s rewards have increased

and may have now exceeded the contract’s amount of rewards that can be

converted to HTM.

8

Code Issues & Recommendations

Since the code is not open-source, only the remaining issues are published.

C5: Liquidations and collateral withdrawals might exceed limits of

gas and of calls to built-in functions

Severity: Medium Status: Won't fix

Description

Current behavior: Actions which change the user's collateral, e.g. liquidations

and collateral withdrawals, have significant gas cost and call many built-in

functions. Indeed, these actions perform multiple computations, storage

updates, and calls to several external smart contracts. In particular, at the time

of this audit, these actions call a new endpoint on_market_change of the USH

money market which performs heavy logic as well.

However, if the gas cost of these actions is too high, e.g. superior to the gas

half-limit in a mini-block (300M), or if the number of built-in calls is too high,

e.g. the number of storage reads exceeds 1500, then the transactions could

take too long to be executed or even fail, possibly resulting in losses of funds.

Moreover, past simulations have shown that liquidations and collateral

withdrawals already cost significant amounts of gas. Therefore, changes

increasing the gas costs of these actions are highly sensitive.

Expected behavior: The gas cost of actions involving collateral changes

should stay below 300M gas, in order to give transactions enough chances to

be executed, even in a context where the shard is saturated and at most 600M

gas can be consumed by all transactions included in a block. In addition, these

actions should not exceed the limits of built-in function calls, to make sure that

transactions can be executed.

Worst consequence: If the gas cost issue exists, an attacker could exploit it by

borrowing a huge amount and becoming impossible to liquidate, as any

liquidation transaction would run out of gas.

https://docs.multiversx.com/developers/contract-api-limits/#multiversx-smart-contracts-api-limits

9

Recommendation

At a high-level, we recommend running a system test of the worst case

scenario on devnet in order to check that gas costs are reasonable, i.e. less

than the gas half-limit in a mini-block (300M), and that the number of built-in

calls is not too big, i.e. it does not make the transaction fail. Then, the devnet

transactions can be shared with the auditor. Subsequently, if we observe that

gas costs or the number of built-in calls are too big, then we propose

approaches to reduce these amounts, otherwise it is reasonable to consider

that there is no issue.

More precisely, here are two test scenarios. The 1st one assumes that the

market observers in the Controller are the USH money market and the Booster

v2:

Add the maximal number of discounts on interest in the Discount Rate

Model. Note that from the issue “List of discounts can be too big and users

can't be liquidated or withdraw their collateral” reported in the audit report

of the Discount Rate Model, this amount should be bounded.

Create two user accounts, Alice and Bob, who are USH borrowers, with

collateral across the maximum number of money markets:

MAX_MARKETS_PER_ACCOUNT = 8 .

Create the maximum number of active rewards batches in the Controller for

these money markets: MAX_REWARDS_BATCHES = 3 .

Create the maximum number of active rewards batches in the Booster for

these money markets: MAX_REWARDS_BATCHES = 2 .

Alice stakes in the Booster the maximum number of different j-tokens:

MAX_ACCOUNT_STAKE_TOKENS = 3 .

Bob liquidates Alice. Bob also has non-zero collateral in the same money

market where the liquidation occurs.

We check that the overall gas cost of the transaction is at most around

300M gas.

The 2nd scenario is the same as the 1st one except that the Booster v1 is used

instead of the Booster v2, and Alice and Bob start with a balanced portfolio in

the Booster.

Subsequently, in case one test witnesses that the transaction fails or costs

significantly more than 300M gas, in order to resolve the issue, we can reduce

10

the gas costs and number of built-in calls of the endpoints

on_market_change , both in the Booster and in the USH money market, as well

as in the endpoints of the Controller, as described below.

1) In the Controller, we can introduce a smaller limit on the number of money

markets a user is allowed to enter, specifically for USH borrowers, e.g. a limit

of 4 money markets, including the USH money market.

2) In the Booster, we can follow the suggestions in the issue "“unstake” and

“on_market_change” might consume too much gas" of the Booster v2 audit

report.

3) In the USH money market, we can implement some of the following

changes:

Not re-computing the discount on the interest twice for the liquidator, as

done currently: once after the debt is repaid, and once after the collateral is

seized. It would be sufficient to compute the discount only once in the end.

Not updating the discount of the liquidator in a liquidation transaction. The

liquidator would update his discount later by himself if he wants, as it will be

in his favor.

Allowing only 1 collateral for computing the discount, and let the user

choose the collateral he wants to use. With this way of doing, in

on_market_change , there would be no need to load the Discount Rate

Model smart contract and execute complex logic to compute the user's

discount, as it would be enough to read the storage of the discount data

associated to that collateral and use it directly.

Resolution notes

Multiple optimizations have been implemented, allowing to reduce the gas

costs of the worst case scenario to 472M (link to devnet transaction). Although

this is a significant improvement, this gas cost remains significantly superior to

300M, i.e. half the limit of a mini-block, hence it might be difficult to include

such liquidation transactions when the blockchain is congested.

https://devnet-explorer.multiversx.com/transactions/2e5eaf9ccb8c188a62347be95657f6de0bb384d0a57fa77d1b61d9f324af86bf

