
1

Security Audit Report

Ta-da user-funds (3)
smart contract

by
on November 27, 2024

2

Table of Content

Disclaimer 3

Terminology 3

Audit Summary 4

Inherent Risks 5

Code Issues & Recommendations 7

C2: User can be debited any amount of TADA without agreement by the

slashing mechanism

7

C3: The authorization for debiting a user through the slashing mechanism

never expires

10

C4: Can have more than 1 whitelisted address and increase risks of users

losing funds

11

Test Issues & Recommendations 12

3

Disclaimer
The report makes no statements or warranties, either expressed or implied,

regarding the security of the code, the information herein or its usage. It also

cannot be considered as a sufficient assessment regarding the utility, safety

and bugfree status of the code, or any other statements.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

Terminology
Inherent risk: A risk for users that comes from a behavior inherent to the smart

contract design.

Inherent risks only represent the risks inherent to the smart contract design,

which are a subset of all the possible risks. No inherent risk doesn’t mean no

risk. It only means that no risk inherent to the smart contract design has been

identified. Other kind of risks could still be present. For example, the issues not

fixed incur risks for the users, or the smart contracts deployed as upgradeable

also incur risks for the users.

Issue: A behavior unexpected by the users or by the project, or a practice that

increases the chances of unexpected behaviors to appear.

Critical issue: An issue intolerable for the users or the project, that must be

addressed.

Major issue: An issue undesirable for the users or the project, that we strongly

recommend to address.

Medium issue: An issue uncomfortable for the users or the project, that we

recommend to address.

Minor issue: An issue imperceptible for the users or the project, that we advise

to address for the overall project security.

4

Audit Summary

Scope of initial audit

Repository: https://gitlab.com/ta-da2/smart-contracts/sc-tada

Commit: 0da4e47e7ae9ba34ede9cfb4b25cb76614f550a3

Path to Smart contract: ./user_funds/

Scope of final audit

Repository: https://gitlab.com/ta-da2/smart-contracts/sc-tada

Commit: 2463c7e496b7f80419669e20499eea2a7e2b1247

Path to Smart contract: ./user_funds/

Report objectives

1. Reporting all inherent risks of the smart contract.

2. Reporting all issues in the smart contract code.

3. Reporting all issues in the smart contract test.

4. Reporting all issues in the other parts of the smart contract.

5. Proposing recommendations to address all issues reported.

3 inherent risks in the final commit

3 issues in the final commit

10 issues reported from the initial commit and 3 remaining in the final commit:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 1 0 0 0 0 0

Major 1 0 0 1 0 0

Medium 2 1 0 2 0 0

Minor 5 0 0 0 0 0

https://gitlab.com/ta-da2/smart-contracts/sc-tada
https://gitlab.com/ta-da2/smart-contracts/sc-tada

5

Inherent Risks

R1: Users can be slashed although they correctly completed their

tasks.

This is because when a user gives his consent to be slashed in case he

incorrectly complete a given task, even if he then correctly completes the task,

the consent would still allow addresses whitelisted by Ta-da to slash him. Thus

the user might be erroneously slashed e.g. if the whitelisted address is

corrupted or has made a mistake.

R2: Users might be debited for purchases but not get the expected

benefits in return.

This is because when a user is debited in the smart contract for purchases, he

must trust that the associated benefit, which is handled outside of the smart

contract, will be granted to him in return.

Example: if a user purchases a potion on the TADA application, which should

help him getting a higher ranking among users and thereby increase his

rewards, then there is neither guarantee that he would receive the potion,

neither that he would get a higher ranking thanks to the potion, nor that he

would earn more rewards thanks to the higher ranking.

R3: Users requesting to withdraw using signatures in the format of

the TON Telegram wallet might never receive their TADA.

This is because when a user requests to withdraw with a signature in the

format of the TON Telegram wallet, the user's TADA are withdrawn to a Ta-Da

whitelisted address, and there is trust that this address will then bridge the

TADA to the TON blockchain and forward them to the user. In particular, the

6

user might not receive his TADA if the whitelisted address is inactive,

compromised or unable to bridge the TADA from MultiversX to TON.

7

Code Issues & Recommendations

Since the smart contract code is not open-source, only the remaining issues

are published.

C2: User can be debited any amount of TADA without agreement by

the slashing mechanism

Severity: Major Status: Won't fix

Location

user_funds/src/lib.rs

Description

Current behavior: A user can be debited any amount of TADA at any time even

if he did not agree with it, through the slashing mechanism. Indeed, at any

time, the addresses whitelisted by Ta-da can call slash to debit the TADA of a

user which are held in the smart contract.

In particular, a user could be slashed even if he did not misbehave while

performing tasks. Consequently, if a whitelisted address is corrupted or makes

a mistake, it could make some users lose funds.

Expected behavior: It should be possible to slash a user only if the user gave

his consent for it, which he would do if he performed tasks knowing that

misbehaving would entail slashing.

In the recommendation, we describe how to verify that a user gave his consent

using signatures.

Worst consequence: A whitelisted address is corrupted and steals the funds

of all users.

Example: A whitelisted address is corrupted and slashes all users. The slashed

TADA are spread between 3 addresses as follows: 34% go to

prize_pool_address , 33% go to burn_address , and 33% go to stake_address .

8

However, the attacker also got access to the private keys of

prize_pool_address , thus he can further withdraw all the funds from it, and

has effectively stolen 34% of all users' funds.

Recommendation

In the slash endpoint, we recommend adding some arguments proving that

the user previously agreed to be debited, exactly as recommended for the

purchase endpoint in another issue of a previous audit report.

Alternatively, we describe an alleviation that strongly mitigates the issue, and

whose advantage over the solution above is to not ask the user to sign

messages each time he performs a task. At a high-level, the idea is that when

a user is slashed, his funds are not withdrawn immediately, rather they enter a

cooldown period COOLDOWN_BEFORE_WITHDRAW_SLASHED_FUNDS of 10 days after

which they can be withdrawn, allowing the owner to intervene and cancel the

slashing if he realizes that users are mistakenly slashed by the whitelisted

addresses.

More precisely, in slash , instead of withdrawing the slashed funds

immediately, we insert the tuple (user, amount, current_epoch +

COOLDOWN_BEFORE_WITHDRAW_SLASHED_FUNDS) at the end of a LinkedListMapper

user_slashed_funds .

Furthermore, there is a new endpoint withdraw_slashed_funds that iterates

over user_slashed_funds from the beginning (which correspond to the oldest

epochs), and for each tuple (user, amount, epoch) :

If there is less than 30M gas left, the endpoint stops and returns.

If epoch > current_epoch , the endpoint stops and returns.

Else, when epoch <= current_epoch , then funds are withdrawn and the

tuple is taken out of user_slashed_funds .

Note that, if one day a problem is detected with slashing, the owner can pause

the call to withdraw_slashed_funds by removing the backend addresses

making errors from the whitelist. It would then be relatively simple to determine

how to return the slashed funds to the users, as they are still in the smart

contract and the exact amounts to send back are in user_slashed_funds .

Moreover, note that this approach is a strong mitigation of the issue, but does

not fully resolve it since there remains the possibility that users are slashed

9

although they should not, and that the owner does not take action or is not

available to prevent the slashed funds from being withdrawn.

Finally, in case the approaches presented above do not fit the needs of the

project, we suggest reaching out to the auditor in order to discuss alternative

solutions.

Resolution notes

The issue has not been fixed.

10

C3: The authorization for debiting a user through the slashing

mechanism never expires

Severity: Medium Status: Won't fix

Description

Current behavior: The addresses whitelisted by Ta-da are able to debit a user

account in the slash endpoint without any time constraint. Therefore, a user

could be slashed for a task he performed very long ago.

However, users would likely not expect to be debited for some tasks they

performed a long time ago and that they may have completely forgotten about.

This could in particular disturb their financial plans.

Another consequence is that, if a whitelisted address is corrupted, then the

attacker would be able to slash all users who completed tasks in the past, even

if they did not misbehave.

Expected behavior: A user should be debited within a reasonable delay, e.g. 10

days, after he misbehaved while completing a task. After this delay, the

authorization for debiting the user should expire, protecting him from being

debited for outdated tasks. This would moreover let the user better anticipate

when debits could happen, and to plan his expenses and financial plans

accordingly.

Worst consequence: A whitelisted address is corrupted and slashes all users,

including all users who were only active a long time ago and behaved correctly.

Recommendation

We suggest following the recommendation of User can be debited any amount

of TADA without agreement by the slashing mechanism, which resolves this

issue by letting users specify the maximum period during which they accept to

be debited, and further enforcing that this period is no bigger than 10 days.

Resolution notes

The issue has not been fixed.

11

C4: Can have more than 1 whitelisted address and increase risks of

users losing funds

Severity: Medium Status: Won't fix

Description

Current behavior: The list backend_addresses of addresses whitelisted by Ta-

da can be arbitrarily big, however whitelisted addresses have a sensitive role,

namely they can debit users if they misbehaved (slashing) or if they paid for

benefits (purchases).

Therefore, the more whitelisted addresses there are, the higher the risk that

one is corrupted or makes a mistake, and that users are debited unexpectedly,

making them lose funds.

Expected behavior: Since the Ta-da team needs to whitelist only 1 address for

debiting users, this should be enforced in the smart contract in order to reduce

the risk that a problem arises with a whitelisted address.

Worst consequence: One of the multiple whitelisted addresses is forgotten by

the Ta-da team, and its private keys are not sufficiently secured. In turn, an

attacker succeeds to get access to the private keys and slashes all users.

Users funds are then spread between the addresses prize_pool_address ,

burn_address , stake_address , and treasury_address . If the attacker also

manipulates one of these addresses, then he can further withdraw some

funds, which are irremediably lost.

Recommendation

We recommend enforcing that there is only one whitelisted address, by making

backend_addresses into a SingleValueMapper<ManagedAddress> instead of a

UnorderedSetMapper<ManagedAddress> .

Resolution notes

The issue has not been fixed.

12

Test Issues & Recommendations

Since the smart contract code is not open-source, only the remaining issues

are published.

