
MultiversX xLaunchpad Guaranteed
Tickets v2

MultiversX smart contract - Security audit by Arda

Repository: https://github.com/multiversx/mx-launchpad-sc
Smart contract path: launchpad-guaranteed-tickets-v2
Initial commit: 44f14ec2ffe4a317d310065b3c0cfae4c26470e3​
Final commit: ddf0836868b054e6de30dc3bef937cafe6d438c0

Issues

1.​ Incorrect distribution of leftover tickets: lead to unfair winner
selection and might lead to less launchpad tokens distributed
and less funds raised than expected

Status Solved

Severity Critical
Commit (if not initial)
Location file (optional)

Additional note (optional)

Description
When trying to distribute a leftover ticket, a random ticket position is sampled in the range
[offset, last_ticket_id], and if the selected ticket is already winning, the offset is simply
incremented by 1. Therefore:

-​ The ticket at position offset will never be selected as a winner from now on. This
means that the distribution of leftover tickets is unfair, because small ticket positions
have higher chances to be filtered/skipped quickly while big ticket positions have higher
chances to be selected as winning.

-​ This might prevent distributing all leftover tickets, because incrementing the offset means
we are skipping a non-winning ticket, and there might insufficiently many remaining
non-winning tickets in the range [offset + 1, last_ticket_id]

None

Example: Consider the following setup:
-​ The project deposited launchpad tokens for 4 winners and there are 2 guaranteed

tickets,
-​ There were 6 tickets confirmed: [1, 2, 3, 4, 5, 6].
-​ Guaranteed tickets are tickets 1 and 6.
-​ Initial winner tickets selected are tickets 1, 2, 3.

At this point, there is 1 leftover ticket left to distribute, since ticket 1 is already winning. However,
based on the current algorithm, here are the chances for a non-winning ticket to be selected as
a winning leftover ticket

-​ Ticket 4: it has 1/3 chances to be selected as a winner.
-​ Ticket 5: it has 1/2 chances to be selected as a winner.
-​ No winners: there is ⅙ chances that no winners are selected.

In summary, ticket 5 has more chances to win than ticket 4, and moreover, it is possible that no
leftover tickets are selected, resulting in 1 less ticket sold than expected.

Recommendation
In try_select_winning_ticket, if the selected ticket is already winning, we suggest
permuting the position of the selected ticket with the ticket at the current position. This way, the
ticket at the current position will still have a chance to be selected in the subsequent selections.

This also allows to remove the comment above distribute_leftover_tickets:

// TODO - add a check if current_ticket_pos > last_ticket_pos

Indeed, with the previous fix, it is certain that the selection will eventually stop without any
further check, as the stopping criterion made in are_all_tickets_distributed will eventually
be met.

Finally, we recommend to re-introduce the unit test (discussed with) Sorin Ionut Petreasca
where the above check seemed to be necessary, and to verify that the check is not necessary
anymore, i.e. that the unit test passes and the distribution of leftover tickets ends successfully.

2.​ Guaranteed tickets that users already won are not
redistributed as leftover tickets and result in less launchpad
tokens distributed and less funds raised than expected

mailto:sorin.petreasca@multiversx.com

None

Status Solved

Severity Critical
Commit (if not initial)
Location file (optional)

Additional note (optional)

Description
When distributing guaranteed tickets to a user, if the user already won some tickets during the
previous winner selection, the excess of guaranteed tickets is not re-allocated as leftover
tickets.

This is because, in process_guaranteed_tickets, when guaranteed_tickets >
user_winning_tickets, we don’t reallocate the winning tickets user_winning_tickets as
leftover tickets:

if guaranteed_tickets > user_winning_tickets {
 let tickets_to_win = guaranteed_tickets - user_winning_tickets;
 self.select_additional_winning_tickets(ticket_range, tickets_to_win, op);
 // We don't reallocate, i.e. we don't do op.leftover_tickets +=
user_winning_tickets
} else {
 op.leftover_tickets += guaranteed_tickets;
}

Consequently, the final number of winners will be smaller than expected, and the project will
have distributed less tokens and raised less funds than expected.

Example: Let’s say the project announces a total of 6 final winners: nr_winning_tickets =
6. Alice and Bob are the only 2 participants, and Alice and Bob both have 2 guaranteed tickets.
So now nr_winning_tickets = 2 and total_guaranteed_tickets = 4.

-​ Alice and Bob confirm 3 tickets each.
-​ During winner selection, Both Alice and Bob earn 1 ticket (recall nr_winning_tickets

= 2 so no more winners can be selected).
-​ Now process_guaranteed_tickets takes place. Both Alice and Bob earn

guaranteed_tickets - user_winning_tickets = 1 additional ticket.
There are no leftover tickets. So overall 4 tickets are winning, although we expected 6 winners.

None

This would have worked fine if, in step 5, we would have increased the leftover by
user_winning_tickets = 1 both for Alice and Bob, leading to 2 additional tickets being
distributed.

Recommendation
In process_guaranteed_tickets, when guaranteed_tickets > user_winning_tickets,
we recommend reallocating the winning tickets user_winning_tickets as leftover tickets:

if guaranteed_tickets > user_winning_tickets {
 let tickets_to_win = guaranteed_tickets - user_winning_tickets;
 self.select_additional_winning_tickets(ticket_range, tickets_to_win, op);
 op.leftover_tickets += user_winning_tickets
} else {
 op.leftover_tickets += guaranteed_tickets;
}

Finally, we recommend implementing a unit test witnessing that already won tickets are correctly
re-distributed. The scenario with Alice and Bob from the example above would work.

3.​ Random selection of winners might be manipulated

Status Solved

Severity Major
Commit (if not initial)
Location file (optional)

Additional note (optional)
Resolved differently by allowing only owner or user account to make 1st call to
select_winners,and distribute_guaranteed_tickets_endpoint.

Description
Anyone can call select_winners, and the 1st call determines the random seed that will be
used to determine all winners.

Therefore, a malicious user could call select_winners with a smart contract and revert the
transaction if he is unsatisfied with the first few selected winners. Over multiple consecutive txs

in a single block, he could repeat the operation until he is satisfied with the first few selected
winners.

Moreover, the manipulation of the selection of winners for leftover tickets is also possible,
although much harder to accomplish because the randomness is decided at the time
guaranteed tickets are distributed. Therefore, the attacker would have to simulate on his own
the result of the whole distribution of guaranteed tickets (which is deterministic), and based on
this result, determine if the random seed will result in the selection he wants for winners of
leftover tickets.

Recommendation
For the 1st call to select_winners,and distribute_guaranteed_tickets_endpoint, we
suggest verifying that the caller is either the owner, or an account from another shard. This will
prevent manipulations.

Note that we should not assume that the launchpad smart contract is on shard 1. Rather, we
can compute the shard of the launchpad smart contract, and verify that it differs from the caller’s
shard.

4.​ Unset unlock schedule prevents users from claiming tokens

Status Solved

Severity Major
Commit (if not initial)
Location file (optional)

Additional note (optional)

Description
In case no unlock schedule is set, compute_claimable_tokens returns that no tokens can be
claimed, preventing users from ever withdrawing their launchpad tokens.

Recommendation
In case no unlock schedule is set, we recommend considering by default that there is no vesting
for the launchpad tokens, and that users can withdraw all their launchpad tokens as soon as the
claim period has started.

None

We further recommend adding a unit test covering the scenario where no unlock schedule is set
at claim time.

5.​ Unlock schedule can be set after users bought tickets

Status Solved

Severity Major
Commit (if not initial)
Location file (optional)

Additional note (optional)

Description
In case no unlock schedule is set, the owner can call set_unlock_schedule and set any unlock
schedule. However, this means that users who bought their tickets now are forced to wait a
possibly unwanted vesting period before they can withdraw.

Recommendation
In set_unlock_schedule, we recommend always checking that users did not start buying
tickets, i.e. we replace the requirement that

current_block < confirmation_period_start_block ||
self.unlock_schedule().is_empty()

with the requirement that get_launch_stage == LaunchStage::AddTickets.

Moreover, we recommend adding a unit test showing that the unlock schedule can’t be set even
if empty, once the confirmation period has started.

6.​ One user can have too big ticket range and could stuck a
whole launch

Status Solved

Severity Medium

Commit (if not initial)
Location file (optional)

Additional note (optional) Solved but with a bigger constant MAX_TICKETS_ALLOWANCE=255

Description
There is no limit on the number of tickets in a user’s ticket range.
​
If this number is too big, this could make some endpoints run out of gas, e.g. endpoints calling
select_additional_winning_tickets and winning_tickets_in_range, and the
launchpad would be stuck, preventing users from withdrawing their launchpad tokens and
payment tokens.

Recommendation
In ​​add_tickets_with_guaranteed_winners, we recommend verifying for each user that the
maximum allowed confirmed tickets total_tickets_allowance is smaller than a limit
MAX_GUARANTEED_TICKETS_INFO, MAX_TICKETS_ALLOWANCE e.g. 25.

7.​ One user can have too many guaranteed tickets info and
could stuck a whole launch

Status Solved

Severity Medium
Commit (if not initial)
Location file (optional)

Additional note (optional)

Description
There is no limit on the number of guaranteed tickets info guaranteed_tickets_info that a
user can have.
​
If this number is too big, the distribution of guaranteed tickets could fail by running out of gas,
and the launchpad would be stuck, preventing users from withdrawing their launchpad tokens
and payment tokens.

Recommendation
In ​​add_tickets_with_guaranteed_winners, we recommend verifying for each user that the
length of his guaranteed tickets information guaranteed_tickets_info is smaller than a limit
MAX_GUARANTEED_TICKETS_INFO, e.g. 10.

8.​ Vesting schedule can have too many unlock milestones and
prevent users from withdrawing their funds

Status Solved

Severity Medium
Commit (if not initial)
Location file (optional)

Additional note (optional)

Description
There is no limit on the number of milestones in the vesting schedule of launchpad tokens.
​
If there are too many milestones, the iteration over milestones in compute_claimable_tokens
could fail and prevent users from withdrawing their funds.

Recommendation
In set_unlock_schedule, we recommend enforcing that the number of milestones is smaller
than a limit MAX_UNLOCK_MILESTONES, e.g. 50.

9.​ Possible underflow of “nr_winning_tickets” when
unblacklisting

Status Solved

Severity Medium
Commit (if not initial)
Location file (optional)

Additional note (optional)

Description
When a user is unblacklisted, in remove_guaranteed_tickets_from_blacklist, his
previously recorded guaranteed tickets guaranteed_tickets_added are added back to the
storage total_guaranteed_tickets and depleted from the storage nr_winning_tickets.
However, it is possible that guaranteed_tickets_added > nr_winning_tickets, in which
case the decrease of nr_winning_tickets would underflow, leading to a huge number of
tickets nr_winning_tickets recorded in storage.

In turn, this would force the project to deposit an amount of launchpad tokens which is
considerably bigger than expected.

Recommendation
In remove_guaranteed_tickets_from_blacklist, we suggest requiring that
guaranteed_tickets_added <= nr_winning_tickets.
​
We further recommend adding a unit test witnessing that unblacklisting fails when it would
actually make nr_winning_tickets underflow.

10.​ The launch stages are determined by block but block
duration can change

Status Not Solved

Severity Medium
Commit (if not initial)
Location file (optional)

Additional note (optional)
This will not be solved, as the team considers it would be easy not to make a
launch if there is an upcoming change of the block duration.

Description
The start time of each stage of a token launch (AddTickets, Confirm, WinnerSelection,
Claim) is determined by a specific block. However, the duration of a block, currently ~6
seconds, is expected to be reduced in the future. If a reduction happens while a launch is
ongoing, it would then shorten the duration of a stage.

For example, after a reduction of the block duration, the launch stage could quickly transition
from Confirm to WinnerSelection, leaving insufficient time for users to buy tickets.

Recommendation
We suggest using timestamps instead of blocks in order to determine the start of the different
stages.

11.​ Owner can postpone at will the claim period and users would
withdraw their funds too late (or never)

Status Not Solved

Severity Medium
Commit (if not initial)
Location file (optional)

Additional note (optional)
It is considered unnecessary to resolve this issue by the team because the
owner anyway has full control on the launchpad SC (he could upgrade it).

Description
By calling set_winner_selection_start_block or set_claim_start_block, the owner can
postpone the time at which users will be allowed to claim and withdraw their funds. There is no
constraint on the introduced delay or on the number of times the owner is allowed to postpone
these times.

Recommendation
We suggest allowing the owner to call set_winner_selection_start_block and
set_claim_start_block at most MAX_CLAIM_TIME_CHANGES = 2 times, and each time to
make sure that the introduced delay is not greater than MAX_DELAY_FOR_CLAIM_TIME = 2
days.

In particular, we would have a storage claim_time_changes increased each time the owner
calls set_winner_selection_start_block and set_claim_start_block, and in both these
endpoints we would first check that claim_time_changes < MAX_CLAIM_TIME_CHANGES.

Alternative solution: if it is not needed to let the owner postpone the winner selection and the
claim period, we can simply remove the endpoints set_winner_selection_start_block and
set_claim_start_block.

12.​ Can’t unblacklist a user who has no guaranteed tickets

None

Status Solved

Severity Medium
Commit (if not initial)
Location file (optional)

Additional note (optional)

Description
Unblacklisting a blacklisted user who had no guaranteed tickets would fail. This is because in
this case, the storage blacklist_user_ticket_status(user) was not filled during
blacklisting, and in turn remove_guaranteed_tickets_from_blacklist will fail when trying to
read this storage:

let user_ticket_status = self.blacklist_user_ticket_status(&user).take();

Recommendation
In remove_guaranteed_tickets_from_blacklist, we recommend reading the storage
blacklist_user_ticket_status(user) only if it is non-empty.

Moreover, we recommend adding a unit test where a user with no guaranteed tickets is
unblacklisted.

13.​ Can’t refund non-payable smart contract or frozen address in
same shard

Status Not Solved

Severity Medium
Commit (if not initial)
Location file (optional)

Additional note (optional)
SCs are forbidden in the launchpad (can’t KYC) and an explicit protection
against SCs has been added. The case of a frozen account has not been
handled.

Description
Blacklisting a non-payable smart contract in the same shard is impossible, as
refund_ticket_payment would fail sending back tokens to that smart contract.

Therefore, if a malicious user wants to prevent being blacklisted, he could use a smart contract
in the same shard and make it non-payable.

Similarly, it is impossible to blacklist an account in the same shard which is frozen for the
payment token.

Finally, a user will be unable to claim his launchpad tokens if he is frozen for the payment token,
as the refunding of the non-winning tickets would fail.

Recommendation
In refund_ticket_payment, we recommend verifying that the account is in the same shard
and is either frozen or a non-payable smart contract. In this case, instead of sending the tokens,
we would add the amount in a dedicated global storage failed_refunds, from which only the
owner can withdraw by calling an only-owner endpoint withdraw_failed_refunds. In this way,
if there are some failed refunds, the blacklisting would still work, and the owner would always
have the ability to withdraw the failed refunds and reimburse users if needed.

14.​ No protection against release epochs too far in the future

Status Solved

Severity Medium
Commit (if not initial)
Location file (optional)

Additional note (optional)

Description
There is no protection against release epochs which could be set by mistake too far in the
future, e.g. 100 years, and would prevent users ever getting their vested tokens.

Recommendation
In set_unlock_schedule, we suggest verifying that the biggest release epoch is at most
MAX_RELEASE_EPOCH = 10 years.

None

None

15.​ Project can’t withdraw his launchpad tokens if no one bought
tickets

Status Solved

Severity Medium
Commit (if not initial)
Location file (optional)

Additional note (optional)

Description
If no one bought tickets, the storage self.ticket_batch(FIRST_TICKET_ID) is empty, and
therefore the endpoint filter_tickets fails at the following line:

let run_result = self.run_while_it_has_gas(|| {
 let current_ticket_batch_mapper =
self.ticket_batch(first_ticket_id_in_batch);
 let ticket_batch: TicketBatch<Self::Api> = current_ticket_batch_mapper.get();
 ...
}

Therefore, the launch is stuck at the filtering phase, and the project will never be able to
withdraw his launchpad tokens.

Recommendation
In filter_tickets, we suggest modifying the loop such that it starts by verifying whether all
the tickets were processed, instead of doing it at the end of the loop:

let run_result = self.run_while_it_has_gas(|| {

if first_ticket_id_in_batch == last_ticket_id + 1 { STOP_OP }

let current_ticket_batch_mapper = self.ticket_batch(first_ticket_id_in_batch);
let ticket_batch: TicketBatch<Self::Api> = current_ticket_batch_mapper.get();

...

CONTINUE_OP
}

Finally, we recommend adding a unit test where no user buys any tickets, and showing that the
project can process all the steps and withdraw his tokens at the end.

16.​ “run_while_it_has_gas” mechanism unreliable for distributing
guaranteed tickets because of different gas costs to process
different users

Status Not Solved

Severity Medium
Commit (if not initial)
Location file (optional)

Additional note (optional)
The team decided that the current mechanism will be used as it has already
been tested multiple times on previous versions, and on the current version, the
possible gas problems are not too constraining.

Description
In select_guaranteed_tickets, the “run_while_it_has_gas” mechanism is used to
distribute guaranteed tickets to multiple consecutive users. The mechanism computes the gas
cost for distributing guaranteed tickets to the 1st user, and considers that this gas cost will be
the same for all subsequent users. However, this won’t be the case because the gas cost for
processing each user is proportional to the number of user guaranteed ticket infos
user_ticket_status.guaranteed_tickets_info and to the size of the user’s ticket range.

Consequently, this could make the selection of guaranteed tickets run out of gas because of a
wrong estimate of the gas cost for processing each user. This could further make it difficult to
adjust the gas limit of a transaction so as to make sure that the transaction will pass.

None

Recommendation
First, we suggest following the recommendations to other issues which bound the number of
ticket infos of a user and the size of his ticket range.

Second, in select_guaranteed_tickets, instead of using the “run_while_it_has_gas”
mechanism, we suggest checking that the gas left is greater than a conservative value, e.g.
50_000_000, before processing a new user, i.e. we can replace the “run_while_it_has_gas”
loop the following code inside select_guaranteed_tickets:

loop {

 let gas_left = self.blockchain().get_gas_left();
 if gas_left <= MIN_GAS_FOR_SELECTING_TICKET {
 break;
 }

 if users_left == 0 {
 break;
 }

 ...

 if user_ticket_status_mapper.is_empty() {
 continue;
 }

 ...
}

17.​ No protection against harmful durations for launch phases

Status Not Solved

Severity Medium
Commit (if not initial)
Location file (optional)

Additional note (optional)
The team decided that these parameters should be triple-checked off-chain
upon deployment.

Description
In require_valid_time_periods, we don’t protect against harmful time periods:

-​ If winner_selection_start_block is too far from
confirmation_period_start_block, it could take too long before users who bought
tickets can withdraw their funds.

-​ If confirmation_period_start_block is too close to
winner_selection_start_block, it would not leave enough time for users to buy
tickets.

-​ If claim_start_block is too far in future, users can’t withdraw their tokens.

Recommendation
In require_valid_time_periods, we suggest introducing the following protections:

-​ Requiring that winner_selection_start_block -
confirmation_period_start_block is between MIN_BUY_TICKETS_STAGE_DURATION
= 1 day and MAX_BUY_TICKETS_STAGE_DURATION = 10 days.

-​ Requiring that claim_start_block - winner_selection_start_block is at most
MAX_DELAY_BEFORE_CLAIM = 5 days.

18.​ Views for winning tickets return wrong result after user has
claimed

Status Not Solved

Severity Minor
Commit (if not initial)
Location file (optional)

Additional note (optional)
This issue is known and the front-end/microservice does not need access to the
view once user has claimed. Therefore it is not necessary to resolve it.

Description
Once a user has claimed some launchpad tokens, his ticket range is cleared. Thus, from now
on, the view functions get_winning_ticket_ids_for_address and

None

get_number_of_winning_tickets_for_address will return wrong results, i.e. that the user
has won no tickets.

Recommendation
We suggest:

-​ Either making the view fail if the claim period has start, with an explicit error message
explaining that the view functions are not reliable once users have started claiming;

-​ Or not clearing the ticket range of a user when he claims.

19.​ Possible u32 overflow of ticket ids

Status Solved

Severity Minor
Commit (if not initial)
Location file (optional)

Additional note (optional) This is minor because so unlikely

Description
In try_create_tickets, it is possible that the last ticket of a user exceeds the maximum u32
value and starts back from 0:

let first_ticket_id = last_ticket_id_mapper.get() + 1;
let last_ticket_id = first_ticket_id + nr_tickets - 1;
ticket_range_mapper.set(TicketRange {
 first_id: first_ticket_id,
 last_id: last_ticket_id,
});

This would result in tickets of different users overlapping each other, and to the blocking of the
overall launch, e.g. when there will be a need to iterate from first_ticket_id to
last_ticket_id, the iteration would fail and the launch would be stuck.

None

Recommendation
In try_create_tickets, we recommend requiring that first_ticket_id < MAX::u32 -
nr_tickets.

20.​ Unnecessary and misleading conditional property in
“filter_tickets”

Status Solved

Severity Minor
Commit (if not initial)
Location file (optional)

Additional note (optional)

Description
In filter_tickets, when processing the tickets of a user, we have this condition:

if self.is_user_blacklisted(address) || nr_confirmed_tickets == 0 {
 self.ticket_range_for_address(address).clear();
 current_ticket_batch_mapper.clear();
}

However, the conditional property that a user is blacklisted is:

-​ Unnecessary: if a user is blacklisted, he has 0 confirmed tickets, so the other conditional
property nr_confirmed_tickets == 0 would be true.

-​ Misleading: it suggests that it would be fine executing the lines under this condition even
if the user does not have 0 confirmed tickets. However this would result in a wrong ticket
filtering, as we would then increase the offset nr_removed by (nr_tickets_in_batch
- nr_confirmed_tickets) instead of nr_tickets_in_batch. That would later stuck
the launch completely when processing guaranteed tickets.

Recommendation
In filter_tickets, we require removing the conditional property
self.is_user_blacklisted(address). Instead we would have:

None

if nr_confirmed_tickets == 0 {
 self.ticket_range_for_address(address).clear();
 current_ticket_batch_mapper.clear();
}

21.​ Unnecessary function “select_winning_ticket”

Status Solved

Severity Minor
Commit (if not initial)
Location file (optional)

Additional note (optional)

Description
The function select_winning_ticket does nothing but calling another function
try_select_winning_ticket. Therefore it would be simpler calling
try_select_winning_ticket directly each time instead of select_winning_ticket.

Recommendation
We recommend calling try_select_winning_ticket directly each time instead of
select_winning_ticket, and deleting the function select_winning_ticket.

22.​ Blacklist already blacklisted users and unblacklist
non-blacklisted users does not fail

Status Solved

Severity Minor
Commit (if not initial)
Location file (optional)

Additional note (optional)

Description
Blacklisting already blacklisted users does not always fail, as well as unblacklisting
non-blacklisted users. This is unexpected for the caller who would see the transaction as
successful and believe that he blacklisted users who were not blacklisted, or unblacklisted only
blacklisted users.

Recommendation
We recommend making the blacklisting endpoint fail if the user is already blacklisted, and the
unblacklisting endpoint fail if the user is not blacklisted.

23.​ Missing vertical space

Status Solved

Severity Minor
Commit (if not initial)
Location file (optional)

Additional note (optional)

Description
Between consecutive functions and storages, vertical spaces are included to improve
readability. However there is no vertical space separating the storages
totalGuaranteedTickets and userTicketStatus.

Recommendation
We recommend adding vertical space between the storages totalGuaranteedTickets and
userTicketStatus.

Inherent Risks

1.​ Users must trust that admins will submit correct information about
guaranteed tickets and allowances. If errors are made, users might
earn less launchpad tokens or have less chances to win than they
should.

Disclaimer

The report makes no statements or warranties, either expressed or implied, regarding the
security of the code, the information herein or its usage. It also cannot be considered as a
sufficient assessment regarding the utility, safety and bugfree status of the code, or any other
statements. This report does not constitute legal or investment advice. It is for informational
purposes only and is provided on an "as-is" basis. You acknowledge that any use of this report
and the information contained herein is at your own risk. The authors of this report shall not be
liable to you or any third parties for any acts or omissions undertaken by you or any third parties
based on the information contained herein.

	MultiversX xLaunchpad Guaranteed Tickets v2
	Issues
	1.​Incorrect distribution of leftover tickets: lead to unfair winner selection and might lead to less launchpad tokens distributed and less funds raised than expected
	Description
	Recommendation
	2.​Guaranteed tickets that users already won are not redistributed as leftover tickets and result in less launchpad tokens distributed and less funds raised than expected
	Description
	Recommendation
	3.​Random selection of winners might be manipulated
	Description
	Recommendation
	4.​Unset unlock schedule prevents users from claiming tokens
	Description
	Recommendation
	5.​Unlock schedule can be set after users bought tickets
	Description
	Recommendation
	6.​One user can have too big ticket range and could stuck a whole launch
	Description
	Recommendation
	7.​One user can have too many guaranteed tickets info and could stuck a whole launch
	Description
	Recommendation
	8.​Vesting schedule can have too many unlock milestones and prevent users from withdrawing their funds
	Description
	Recommendation
	9.​Possible underflow of “nr_winning_tickets” when unblacklisting
	Description
	Recommendation
	10.​The launch stages are determined by block but block duration can change
	Description
	Recommendation
	11.​Owner can postpone at will the claim period and users would withdraw their funds too late (or never)
	Description
	Recommendation
	12.​Can’t unblacklist a user who has no guaranteed tickets
	Description
	Recommendation
	13.​Can’t refund non-payable smart contract or frozen address in same shard
	Description
	Recommendation
	14.​No protection against release epochs too far in the future
	Description
	Recommendation
	15.​Project can’t withdraw his launchpad tokens if no one bought tickets
	Description
	Recommendation
	16.​“run_while_it_has_gas” mechanism unreliable for distributing guaranteed tickets because of different gas costs to process different users
	Description
	Recommendation
	17.​No protection against harmful durations for launch phases
	Description
	Recommendation
	18.​Views for winning tickets return wrong result after user has claimed
	Description
	Recommendation
	19.​Possible u32 overflow of ticket ids
	Description
	Recommendation
	20.​Unnecessary and misleading conditional property in “filter_tickets”
	Description
	Recommendation
	21.​Unnecessary function “select_winning_ticket”
	Description
	Recommendation
	22.​Blacklist already blacklisted users and unblacklist non-blacklisted users does not fail
	Description
	Recommendation
	23.​Missing vertical space
	Description
	Recommendation

	Inherent Risks
	1.​Users must trust that admins will submit correct information about guaranteed tickets and allowances. If errors are made, users might earn less launchpad tokens or have less chances to win than they should.

	Disclaimer

