
MultiversX Guild
MultiversX smart contract - Security audit by Arda

Repository: https://github.com/multiversx/sc-guilds-rs/
Smart contract path: guild-sc
Initial commit: 7a394909b25514c329e19ce9b36d12c634cec464​
Final commit: 5583fe6e2bf12fdbf74170cfd9d05f8d0fd96c43​

Issues
The issues below have been raised over several 5 consecutive reviews, and appear from the
most recent review (R5) to the oldest (R1).

A-R5.1. If the maximum number of guilds is reached, a guild can Not Solved Medium
be deployed but it can be activated, in the sense that it can’t receive rewards. However, it is
possible that users have staked some tokens. In this case, even if the guild is not yet active,
users would need to wait for the unbonding period before they can withdraw.

Normal users also have the option to migrate to another guild which is active, but the guild
master is forced to wait the 20 days unbonding period.

A-R4.1. Users can stake in guilds where the unbond token is not yet Solved Medium
issued. This would prevent them from withdrawing their funds. Indeed, once a guild is deployed,
it is possible to immediately stake in it (as there is no state mechanism), even if the unbond
token has not been issued.

Solution: In the endpoint stake_farm_endpoint, we suggest verifying that the unbond token
has been issued.

A-R4.2. In the endpoint upgrade, the method update_all is called. Solved Medium
This is problematic because this method updates storages that impact rewards, e.g. the rewards
per block and users’ tiers, but does so without first aggregating rewards. Therefore, changes
would impact past rewards, possibly making users lose past rewards.

Solution: In the endpoint upgrade, we suggest not calling the method update_all.

A-R4.3. The field _unused_contract_state of the struct StorageCache Solved Minor
is never used.

None

None

Solution: We recommend deleting the field _unused_contract_state.

A-R3.1. The constraint that a user must call unbond_farm with all his Solved Major
unbond tokens is unnecessary and has the following consequence: if a user has burned some
of his unbond tokens, even 1 unit, then he can’t ever withdraw his UTK. Indeed, unbond_farm
and cancel_unbond can be called only with the full amount of unbond tokens.

Solution: We suggest removing the constraint in unbond_farm and cancel_unbond that the
user must send all his unbond tokens.

A-R3.2. The function withdraw_rewards_common is useless and Solved Minor
unnecessarily complex (~10 lines of code). Indeed, it is only used in the following 2 lines of
close_guild

let remaining_rewards = rewards_capacity - accumulated_rewards;
self.withdraw_rewards_common(&remaining_rewards);

And these 2 lines could simply be replaced by:

self.reward_capacity().set(accumulated_rewards);

Solution: We suggest performing the above simplification in close_guild and deleting the
function withdraw_rewards_common.

A-R3.3. The storage name "guildMaster" is a prefix of other storage Solved Minor
names: “guildMasterTiers”, “guildMasterTokens” and “guildMasterRps”. This is an error-prone
practice, see MultiversX doc.

Solution: We suggest renaming "guildMaster" e.g. into "guildMasterAddress".

A-R2.1. Due to wrong calculations of users’ rewards, an attacker Solved Critical
can drain all the UTK of all guilds, in particular preventing other users from withdrawing.

https://docs.multiversx.com/developers/developer-reference/sc-annotations/#storage_setkey

This is because, when a user claims or compounds rewards for several farm tokens, the
rewards per share (RPS) is only updated to the current RPS for the first farm token, and then is
averaged with all other RPS. What should be done instead is to define the RPS of the merged
position as the current RPS.

Therefore the merged farm token has a too low RPS, i.e. it can be used to claim rewards again
which should not be claimable by this farm position. Thus the user would earn more UTK than it
should, and prevent others from claiming and withdrawing their farm tokens.

The consequence of the above is that an attacker can claim rewards by providing 1 atomic unit
of farm token as 1st payment, and the rest of his farm tokens as 2nd payment. After claiming his
rewards, his merged farm token would have an unchanged RPS (or increased by +1). The
attacker can then repeat this as many times as he wants to steal all rewards from other users.
He can also perform the attack over multiple guilds.

Solution: When a user claims or compounds rewards, we suggest defining the RPS of the new
farm token as the current RPS.

A-R2.2. An attacker can make his share grow arbitrarily big, e.g. Solved Critical
worth 99% of all the staked UTK, hence making all users lose their UTK rewards.

This is because, when a user cancel an unbonding, the whole farm amount (which includes
compounded rewards) is added back to storages which are supposed to count only base stake
(no compounded stake), i.e. the user base staked tokens and the total amount of base staked
tokens (total_staked_tokens).

Therefore, by repeatedly calling unstake_farm and cancel_unbond, the user would make his
share of the total staked UTK grow arbitrarily big.

Example: Initially, there are 100 UTK staked in the guild, and a user Alice has 10 UTK staked: 5
base stake, 5 compounded stake.
Step 1: Alice calls unstake_farm and cancel_unbond: Storages now indicate that there are
105 UTK staked in the guild, and that Alice has 15 UTK staked: 10 base stake, 5 compounded
stake.
Step 2: Alice calls unstake_farm and cancel_unbond: Storages now indicate that there are 110
UTK staked in the guild, and that Alice has 20 UTK staked: 15 base stake, 5 compounded
stake.
…
Step 2000: Alice calls unstake_farm and cancel_unbond: Storages now indicate that there are
10100 UTK staked in the guild, and that Alice has 10010 UTK staked: 10005 base stake, 5
compounded stake.
Therefore Alice started with 10% of the UTK staked and ended up with 99.1% of the UTK
staked. In turn, other users will earn 10x less rewards than they should.

None

Solution: This issue has arisen as a result of complex calculations for distinguishing between
the base and compounded stake of a user. We suggest following the recommendation to issue
A-R1.3 to resolve it.

A-R2.3. Users will receive unexpectedly low rewards: the guild Solved Critical
master will earn close to 0 rewards while other users will receive a bit less than they
should. This is because in generate_aggregated_rewards, when increasing the guild’s
master rewards per share (RPS) and the users’ RPS, in both case the total number of shares is
being overestimated: it is storage_cache.farm_token_supply, the sum of the guild’s master
staked tokens and of the users’ staked tokens.

Solution: We suggest correcting the total number of shares used for increasing the RPS in
generate_aggregated_rewards. That is:

-​ For the guild’s master RPS, it should be the UTK staked by the guild’s master (base and
compounded).

-​ For the users’ RPS, it should be the UTK staked (base and compounded) by all users
except the guild’s master.

A-R2.4. calculate_rewards_for_given_position calculates wrong Solved Major
rewards per share (RPS) for the guild master, hence the front-end will display wrong
rewards.

This is because the function calls calculate_rewards which computes rewards using the
users’ RPS instead of the guild master’s RPS.

Solution: We suggest adding a user argument to calculate_rewards_for_given_position,
which would then be forwarded to calculate_rewards, so that rewards can be calculated
correctly for all users, in particular for the guild master.

A-R2.5. In unstake_farm_common_no_unbond_token_mint, the Solved Major
calculations of base and compounded UTK from a farm position can have rounding errors.
Indeed, the compounded rewards are computed by a rule of three on the farm token’s attributes,
which performs an integer division, hence the compounded rewards can be underestimated,
and in turn the base farm amount can be overestimated:

let original_attributes = exit_result.original_token_attributes.clone();
let base_tokens_removed =
 original_attributes.current_farm_amount -
original_attributes.compounded_reward;
self.remove_total_staked_tokens(&base_tokens_removed);
self.remove_tokens(

 original_caller,
 TotalTokens::new(base_tokens_removed,o riginal_attributes.compounded_reward),
);

This means that too many tokens are removed from the total base staked UTK
(total_staked_tokens) and the user’s base staked UTK. This might lead to failure if these
storages become negative, preventing users from withdrawing their UTK.
Also this might prevent the user from withdrawing all his tokens, thus in particular he would have
to keep more than 100k UTK staked.

Solution: This issue has arisen as a result of complex calculations for distinguishing between
the base and compounded stake of a user. We suggest following the recommendation to issue
A-R1.3 to resolve it.

A-R2.6. Guilds won’t work, i.e. it will be impossible to stake in guilds. This Solved Major
is because the 1st deposit made by the guild master will fail as mint_per_block_rewards
attempts to read an empty storage guild_master_tokens.

Solution: We suggest implementing a default decoding for empty struct TotalTokens, which has
0 fields.

A-R2.7. There is no check that the guilds are not globally paused when Solved Medium
a user merges farm tokens or cancels his unstake.

Solution: We suggest calling require_not_globally_paused in the endpoints for merging and
canceling an unstake.

A-R2.8. In generate_aggregated_rewards, the updates made by Solved Medium
update_all (updates of internal rewards per block, seconds per block, internal tiers and
internal UTK supply) are not done when there are no UTK staked
(storage_cache.farm_token_supply == 0) or when there are not enough rewards to be
distributed (total_reward > remaining_rewards).

Therefore, in such cases, this information would be outdated. For example, if a new guild is
deployed, and the rewards per block (RPB) is globally decreased, and a user later first stakes in
the guild, he will enjoy the outdated bigger RPB until the next interaction in the guild.

Solution: In generate_aggregated_rewards, we recommend calling update_all even when
there are no UTK staked (storage_cache.farm_token_supply == 0) or when there are not
enough rewards to be distributed (total_reward > remaining_rewards).

None

None

A-R2.9. The function id_to_human_readable to convert a number into Solved Minor
its string representation is unnecessary and complex. Indeed, MultiversX Rust framework
already provides the helper function sc_format to make such conversions.

Solution: We suggest deleting the function id_to_human_readable and instead using the
helper function sc_format from the MultiversX Rust framework.

A-R2.10. In base_farm_init, there is unnecessarily complex logic to Solved Minor
define the permissions, including an obsolete mention to backward compatibility:

let caller = self.blockchain().get_caller();
if admins.is_empty() {
 // backwards compatibility
 let all_permissions = Permissions::OWNER | Permissions::ADMIN |
Permissions::PAUSE;
 self.add_permissions(caller, all_permissions);
} else {
 self.add_permissions(caller, Permissions::OWNER | Permissions::PAUSE);
 self.add_permissions_for_all(admins, Permissions::ADMIN);
};

Solution: In the context of the guild, admins is never empty and the caller is the owner, so we
suggest simplifying the above logic to define the permissions as follows:

let caller = self.blockchain().get_caller();
self.add_permissions(caller, Permissions::OWNER | Permissions::PAUSE);
self.add_permissions_for_all(admins, Permissions::ADMIN);

A-R2.11. In withdraw_rewards_common and close_guild, it is Solved Minor
unnecessary to load a storage cache and call generate_aggregated_rewards. Indeed, in both
cases, the rewards aggregation was already made before in multi_unstake (called within
close_guild).

Solution: In withdraw_rewards_common and close_guild, we recommend not loading the
storage cache and not calling generate_aggregated_rewards.

A-R2.12. The storage name total_staked_tokens is used for base Solved Minor
staked tokens only, so it is confusing.

Solution: We suggest following the solution to A-R2.3. Otherwise, we can rename the storage
e.g. into total_base_staked_tokens.

A-R1.1. An attacker can steal all the staked UTK from all guilds by Solved Critical
exploiting a weakness of the endpoint merge_farm_tokens_endpoint.

Namely, this merge endpoint does not explicitly check that the received tokens are farm tokens,
and here are the constraints which are implicitly enforced:

-​ The 1st token should be a farm token, as in merge_from_payments_and_burn it is
explicit that a farm token of the given nonce should be burnt,

-​ For all the nonces provided by the caller, in
get_attributes_as_part_of_fixed_supply, it is required that the attributes of the
farm token with the given nonce can be read. Thus it is required that these nonces are
present in the Guild, but there is no constraint on the amount.

Therefore, an attacker could proceed as follows:

-​ As 1st payment, he provides an atomic unit of a genuine farm token, say with nonce 10.
-​ As additional payment, he provides a fake farm token with nonce 10. The amount is

huge, i.e. equal to the whole farm supply in the Guild.
He would then receive a merged position whose amount would be the total farm supply, hence
he can unstake all the UTK from the Guild, and repeat this operation in other guilds.

Solution: In merge_farm_tokens_endpoint, we suggest explicitly checking that all payments
are farm tokens.

A-R1.2. Once a guild is closed, users can’t simply withdraw their Solved Critical
positions, instead they are forced to migrate their positions to another guild. In particular,
users might be unable to ever withdraw their funds, as it may be impossible to stake
funds in other guilds. This would typically happen if there are no active guilds left, or if all
active guilds are full.

Solution: Users should be able to unstake and withdraw their funds normally even after a guild
is closed. So we suggest letting users call the endpoints for unstaking and unbonding even after
a guild is closed.

A-R1.3. When a user compounds rewards, the new amount of farm Solved Critical
tokens is bigger as it comprises the compounded UTK. This increase is not recorded in the
user’s total base stake as it is marked as user’s compounded stake, however when the user will
unstake the position, this bigger farm amount will be removed from the user’s total base stake.
In summary, a bigger amount is removed from the user’s base stake than what was initially
added. This error has the following consequences:

-​ All UTK rewards compounded by users can’t be withdrawn. Indeed, as soon as the
recorded user’s base stake will become negative due to the calculation error, the
unstake transactions will fail. Thus if the initial base stake of the user is 10 and he
compounds 2 UTK, then he can only withdraw 10 UTK, the remaining 2 UTK can’t be
withdrawn.

-​ A guild master can close his guild without withdrawing all his stake. This is
because he can exploit the calculation error to withdraw less than his total stake while
still withdrawing the amounts of base stake recorded in the Guild.

-​ The Guild APR can become too small. As when users unstake all their positions, a
bigger amount can be removed from the total Guild’s stake than what they deposited.
Since the user APR depends on how much UTK is staked over all in Guilds, and that this
total staked amount would be underestimated, this would reduce the users’ APR.

Solution: We propose a solution which (i) takes into account other related issues and (ii) takes
good care of rounding errors, because tiny rounding errors can have a big impact on the
constraint that when users unstake, they should either leave 0 tokens in the contract or more
than the minimal staked amount.

The solution is as follows:

1.​ For each user, we just record his total stake: sum of base and compounded stake.
Indeed, on a user basis, we don’t need to make any distinction between both. We do the same
for the guild master. So when a user stakes, unstakes or compounds, we can simply update his
total stake based on the new farm amount.

2.​ For the whole Guild, we just keep farm_token_supply (sum of base and
compounded stake) and record the total base stake: total_base_staked_tokens.

In particular, we can remove total_compounded_tokens and total_staked_tokens.
When users unstake positions, we decrease total_base_staked_tokens by: the user farm
amount minus the amount of rewards compounded in the position, which can be obtained from
the attributes.
For safety, we never decrease total_base_staked_tokens below 0, i.e. we cap the
decrease by the current value of total_base_staked_tokens.

Finally, we suggest adding a unit test where, after a user enters, and later compounds some
rewards, he can exit all his position and his total stake is back to 0.

A-R1.4. The APRs for users and guild master are not following the Solved Critical
specifications, in particular users and the guild master have the same APR. This is

None

because, even though rewards are aggregated using the right tiers’ rules, at claim time, there is
no difference between the rewards computation for users and for the guild master. The final
APR they receive is a weighted average between the expected guild master’s APR and the
users’ APR.

Solution: We suggest having different rewards computations for the guild master and for users.
For this, we can introduce a new rewards per share (RPS) for the guild master,
guild_master_reward_per_share, and when the guild master claims, we use this RPS
instead of the users’ RPS. Moreover, when aggregating rewards, we increase the users’ RPS
and the guild master’s RPS separately, based on the respective tiers’ rules.

A-R1.5. The APR for the guild master is strongly underestimated, Solved Major
because the guild master’s tier is computed by using the amount of UTK staked by the guild
master, although from the specifications it should be computed using the amount of UTK staked
by all users in the guild.

Solution: We suggest, as in the specifications, computing the guild master’s tier and APR based
on the total UTK staked in the guild.

A-R1.6. The guild master can’t directly compound his rewards. This Solved Major
is because in compound_rewards, the storage user_tokens(guild_master) is being read
although it is empty, instead of the storage guild_master_tokens(guild_master), and this
will fail.

self.user_tokens(&caller).update(|tokens_per_tier| {
 tokens_per_tier.compounded += &compound_result.compounded_rewards
});

Therefore, he would have to claim his rewards and stake them. This might even be impossible
in case the maximum amount of UTK staked in a guild has been reached.

Solution: We suggest updating the guild master’s storage guild_master_tokens instead of
user_tokens.

A-R1.7. When the guild master closes his guild, all his unstaked tokens Solved Major
are not removed from the total UTK staked over all guilds: total_staking_token_staked.
Therefore, total_staking_token_staked will be overestimated, and the tier for users’ APR
can be overestimated, making users earn more rewards than they should.

Solution: In close_guild, we suggest calling decrease_staked_tokens.

None

None

A-R1.8. Users with non-zero stake should have over 100 UTK staked, Solved Medium
however a user with 99 base UTK staked and 2 compounded UTK staked will not be accepted,
because require_over_min_stake only counts the base stake. However, after discussing with
the project team, the compounded stake should also be counted.

Solution: We suggest, in require_over_min_stake, to also count the user’s compounded
tokens.

A-R1.9. A guild can’t be closed if it has no rewards remaining, Solved Medium
because in close_guild, when a guild is closed there is an ESDT transfer made for the
remaining rewards, which would fail if there are 0 rewards to transfer.

Solution: In close_guild, we suggest not making a ESDT transfer of pending rewards if there
are 0 rewards left.

A-R1.10. In stake_farm_common, a specific logic should be performed Solved Medium
if the user staking UTK (original_caller) is different from the guild master, but instead the
logic is performed for the caller (caller):

if caller != guild_master {
 require!(
 !self.guild_master_tokens().is_empty(),
 "Guild master must stake first"
);
}

Solution: We suggest performing the logic for the user staking UTK (original_caller) instead
of caller.

A-R1.11. In stake_farm_common, a wrong event is emitted, namely in Solved Medium
case a user is migrating a position from another guild, then the event will indicate that it is the
guild factory who is staking tokens, instead of the user. This is because the event indicates that
the user who is staking is caller instead of original_caller:

self.emit_enter_farm_event(
 &caller,
 enter_result.context.farming_token_payment,
 enter_result.new_farm_token,

 enter_result.created_with_merge,
 enter_result.storage_cache,
);

Solution: We suggest emitting the event with original_caller instead of caller.

A-R1.12. It is desired by the project to have endpoints for withdrawing, Solved Medium
claiming and compounding multiple positions, but this is not possible currently: endpoints can
perform such operations for at most one position at a time.

Solution: We suggest making it possible to handle several positions in endpoints for unstaking,
unbonding, claiming and compounding.

A-R1.13. All rewards sent to top_up_rewards after a guild is closed Solved Medium
are lost, because there is no way to retrieve them in the Guild Factory.

Solution: In top_up_rewards we suggest verifying that the guild is not closed.

A-R1.14. Rewards are not aggregated in top_up_rewards. Therefore, Solved Medium
the deposited rewards will contribute to past blocks, even if it is intended that they would
contribute to future blocks only.

Solution: In top_up_rewards we suggest first aggregating rewards, before increasing the
rewards capacity.

A-R1.15. All user endpoints except the exit endpoints (migration, Solved Medium
unbond) are supposed to fail once a guild is paused. However, merge_farm_tokens_endpoint
is an unintended exception to the rule.

Solution: We suggest making merge_farm_tokens_endpoint fail if the guild is closed.

A-R1.16. The owner endpoint withdraw_rewards is payable (although Solved Medium
it should not) and unused (since the Guild Factory has no endpoint to call it).​

Solution: We suggest removing the endpoint withdraw_rewards.

A-R1.17. BLOCKS_IN_YEAR is a hardcoded constant but the number of Solved Medium
blocks in a year will change in the future, when block duration will change. This will therefore
result in a wrong conversion of APR into rewards per block in bound_amount_by_apr.

Solution: We suggest introducing a storage blocks_in_year in the Guild Config, that only the
Guild Factory can change, and to read this storage in guilds whenever needed. However, to
avoid changes of blocks_in_year from impacting non-accumulated rewards for past blocks,
we suggest proceeding as follows:

-​ In each guild, we store an internal version of blocks_in_year, and this storage is used
when aggregating rewards.

-​ After rewards are aggregated, the internal blocks_in_year is updated using the storage
from the Guild Config.

A-R1.18. The file guild-sc/src/farm_base_impl/base_traits_impl.rs Solved Medium
contains mostly redundant or unused functions.

-​ The unused functions are get_exit_penalty, apply_penalty, mint_rewards,
-​ Other functions, apart from calculate_rewards, are redundant, i.e. the correct

implementations are in guild-sc/src/base_impl_wrapper.rs. It is moreover introducing a
confusion as we have twice functions with the same name.

Solution: We suggest removing all the file guild-sc/src/farm_base_impl/base_traits_impl.rs.

A-R1.19. The backend would need an easy way to obtain the total Solved Medium
amount of staked tokens for each user, but right now there is no view function for it.

Solution: We recommend introducing a view function that returns the user’s total amount of
staked tokens, internally handling whether the user is the guild master or not.

A-R1.20. The struct FarmTokenAttributes is useless, as it is always Solved Minor
converted to another struct for attributes of farm tokens and unbond tokens. Moreover, the
associated helper functions from and into are useless.

Solution: We suggest removing the struct FarmTokenAttributes and associated helper
functions.

A-R1.21. The struct RewardPair is useless, since there are no boosted Solved Minor
rewards involved in guilds.

Solution: We suggest removing the struct RewardPair.

A-R1.22. In unstake_farm_common_no_unbond_token_mint, there is a Solved Minor
duplication of the into_part logic to extract the attributes of the exit farm tokens from the
attributes of the full amount of farm tokens. Indeed, it is performed once inside the helper
function exit_farm_base, and once after that in
unstake_farm_common_no_unbond_token_mint. It is unnecessary to do this twice and as the
attributes’ computation is critical, making it as simple as possible will remove ambiguity and
reduce the likelihood that an issue is introduced in future changes.

None

None

Solution: We suggest performing the into_part logic only once, e.g. in the helper function
exit_farm_base and make this function return the attributes so as to not compute them again.

A-R1.23. The imported module SCWhitelistModule is unnecessary Solved Minor
because the only whitelisted caller we need is the Guild Factory, when it calls the endpoint
stake_farm_endpoint. Moreover, it increases the number of privileged addresses mixed
together: whitelisted addresses, admins, guild master.

Solution: We recommend deleting the module SCWhitelistModule, and instead in
stake_farm_endpoint, if the caller is not the user for which the staking is made, we check that
the caller is the owner (i.e. the Guild Factory).

A-R1.24. There is some unused logic around migration nonce, total farm Solved Minor
and external claim in guild-sc/src/config.rs:

-​ DEFAULT_NFT_DEPOSIT_MAX_LEN
-​ DEFAULT_FARM_POSITION_MIGRATION_NONCE
-​ UserTotalFarmPosition

Solution: We suggest removing the unused logic.

A-R1.25. Unused functions in tokens/farm_token.rs: Solved Minor
burn_farm_tokens_from_payments, mint_farm_tokens, get_farm_token_attributes,
burn_farm_token_payment.

Solution: We suggest deleting these methods.

A-R1.26. The following check in withdraw_rewards_common: Solved Minor

require!(
 &rewards_capacity >= withdraw_amount,
 "Not enough rewards to withdraw"
);

is superfluous as it comes just after a strictly stronger check:

let remaining_rewards = &rewards_capacity - &accumulated_rewards;
require!(
 &remaining_rewards >= withdraw_amount,
 "Withdraw amount is higher than the remaining uncollected rewards!"
);

None

Solution: We suggest removing the useless check from withdraw_rewards_common.

A-R1.27. It is unnecessary complex to have a separate file Solved Minor
farm_base_impl/base_farm_init.rs for base_farm_init.

Solution: We suggest removing the file farm_base_impl/base_farm_init.rs and moving
base_farm_init in lib.rs.

A-R1.28. The function find_any_user_tier_apr is unused. Solved Minor

Solution: We suggest deleting find_any_user_tier_apr.

A-R1.29. The function claim_rewards_base is unused. Solved Minor

Solution: We suggest deleting claim_rewards_base.

A-R1.30. The function get_initial_farming_tokens is unused. Solved Minor

Solution: If not used in any changes made for other issues, we recommend deleting
get_initial_farming_tokens.

A-R1.31. In claim_rewards, the variable name virtual_farm_token is Solved Minor
confusing, since the token is not really virtual, indeed it is actually minted.

Solution: We suggest using a more intuitive name like new_farm_token.

A-R1.32. In compound_rewards, the naming tokens_per_tier in the Solved Minor
following lines is confusing:

self.user_tokens(&caller).update(|tokens_per_tier| {
 tokens_per_tier.compounded += &compound_result.compounded_rewards
});

Namely, this variable represents the total base stake of users, so the “per_tier” makes no real
sense here.

Solution: We suggest renaming tokens_per_tier in a more natural way, e.g. tokens or
staked_tokens.

Inherent Risks

1.​ Users have no guarantee that they will get profits according to the
announced APRs, because the UTK supply is limited. Namely, if
there are many users staking in the guild, there will not be enough
rewards available to maintain the announced APRs.

Disclaimer

The report makes no statements or warranties, either expressed or implied, regarding the
security of the code, the information herein or its usage. It also cannot be considered as a
sufficient assessment regarding the utility, safety and bugfree status of the code, or any other
statements. This report does not constitute legal or investment advice. It is for informational
purposes only and is provided on an "as-is" basis. You acknowledge that any use of this report
and the information contained herein is at your own risk. The authors of this report shall not be
liable to you or any third parties for any acts or omissions undertaken by you or any third parties
based on the information contained herein.

	MultiversX Guild
	Issues
	Inherent Risks
	1.​Users have no guarantee that they will get profits according to the announced APRs, because the UTK supply is limited. Namely, if there are many users staking in the guild, there will not be enough rewards available to maintain the announced APRs.

	Disclaimer

