
1

SECURITY AUDIT REPORT

StakingAgency liquid-
staking �4�
smart contract

by
on July 5, 2024

2

Table of Content

Disclaimer 3

Terminology 3

Audit Summary 4

Code Issues & Recommendations 5

C4� EGLD (un)delegated might be much smaller than EGLD waiting for

(un)delegation

5

C6� Can add as provider an address which is not a provider 10

C9� Min top-up for undelegation and max top-up for delegation not

computed for all active providers

12

C11� get_provider_to_delegate_and_amount is unnecessarily complex 14

3

Disclaimer
The report makes no statements or warranties, either expressed or implied,

regarding the security of the code, the information herein or its usage. It also

cannot be considered as a sufficient assessment regarding the utility, safety

and bugfree status of the code, or any other statements.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

Terminology
Inherent risk: A risk for users that comes from a behavior inherent to the smart

contract design.

Inherent risks only represent the risks inherent to the smart contract design,

which are a subset of all the possible risks. No inherent risk doesn’t mean no

risk. It only means that no risk inherent to the smart contract design has been

identified. Other kind of risks could still be present. For example, the issues not

fixed incur risks for the users, or the smart contracts deployed as upgradeable

also incur risks for the users.

Issue: A behavior unexpected by the users or by the project, or a practice that

increases the chances of unexpected behaviors to appear.

Critical issue: An issue intolerable for the users or the project, that must be

addressed.

Major issue: An issue undesirable for the users or the project, that we strongly

recommend to address.

Medium issue: An issue uncomfortable for the users or the project, that we

recommend to address.

Minor issue: An issue imperceptible for the users or the project, that we advise

to address for the overall project security.

4

Audit Summary

Scope of initial audit

Repository: https://github.com/stakingagency/salsa-sc

Commit: 7bb4bb407228c11f80eb797ff137c6c5be33982e

Path to Smart contract: ./

Scope of final audit

Repository: https://github.com/stakingagency/salsa-sc

Commit: b0f7cd19a100d35752c2a07aac73d02165c482d3

Path to Smart contract: ./

Report objectives

�� Reporting all inherent risks of the smart contract.

�� Reporting all issues in the smart contract code.

�� Reporting all issues in the smart contract test.

�� Reporting all issues in the other parts of the smart contract.

�� Proposing recommendations to address all issues reported.

0 inherent risk in the final commit

4 issues in the final commit

25 issues reported from the initial commit and 4 remaining in the final commit:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 0 0 0 0 0 0

Major 5 0 0 1 0 0

Medium 11 0 0 3 0 0

Minor 9 0 0 0 0 0

https://github.com/stakingagency/salsa-sc
https://github.com/stakingagency/salsa-sc

5

Code Issues & Recommendations

Since the smart contract code is not open-source, only the remaining issues

are published.

C4� EGLD (un)delegated might be much smaller than EGLD waiting

for (un)delegation

Severity: Major Status: Won't fix

Location

service.rs
get_provider_to_delegate_and_amount

Description

Current behavior: The computed delegation amount can be significantly

smaller than the EGLDs waiting to be delegated. Similarly for undelegations.

This is because the method get_provider_to_delegate_and_amount computes

the amount to delegate or undelegate based on the difference of top-ups

between providers. If top-ups are very close to each other, then the amount to

delegate or undelegate will be small even if there is a big amount of EGLD

waiting to be delegated or undelegated.

Expected behavior: The EGLD amount being delegated or undelegated should

not be too small compared to the amount pending to be delegated or

undelegated, otherwise this would make the protocol inefficient, as many

transactions will be needed in order to delegate and undelegate all amounts,

inducing delays. Moreover, between subsequent delegations and

undelegations, providers must be refreshed, which takes at least 3 more

blocks, inducing further delays. For delegations, a timelock of 10 blocks must

also be respected between delegations.

Worst consequence: It could take up to a week to delegate all deposited users'

EGLD, during which these EGLD do not earn rewards.

Example: Let's suppose that there are 2 providers with 1 staked node each,

that their top-up difference is 0.5 EGLD, and that there are 10,000 EGLD

6

waiting to be delegated. In such a scenario, the EGLD sent in the transaction

will be 1 EGLD. Since providers are selected alternately, the top-up difference

will remain unchanged. Therefore, the contract will have to send 10,000

transactions. Since delegations must be spaced by at least 10 blocks, i.e. 1

minute, the minimum duration needed for the contract to delegate all the

10,000 EGLD is 6 days, 22 hours, and 40 minutes.

A similar example can be done for undelegation, with the difference that we do

not have to wait for 10 blocks between each undelegation transaction, but

rather 3 blocks in order to refresh providers between consecutive undelegation

transactions.

Recommendation

At a high-level, the solution recommended below tries to delegate (resp.

undelegate) min(amount, max(5% amount, 50)) from the provider with min

top-up (resp. max top-up).

This solution ensures that in 1 hour more than 95% of the pending amount will

be delegated or undelegated. In the example above, it would have taken �1

hour to undelegate 10,000 EGLD compared to �7 days of the current

implementation.

Note that this solution doesn't use dif_topup in the calculation of the amount

to delegate or undelegate, hence:

It helps converging faster to the equalization of top-ups. This is because

(un)delegating the amount dif_topup * staked_nodes pushes the top-up

of the provider directly to the other extreme, while the proposed solution

pushes it more moderately towards the average.

It significantly simplifies the algorithm. Hence any computation related to

dif_topup can be removed from the codebase.

For delegation

We start by defining amount_to_delegate = min(amount, max(5% amount,

50)) . Then:

�� We try to find the active elligible provider with the smallest top-up among

all active elligible providers that also have a free space of at least

amount_to_delegate . A function

find_active_elligible_provider_min_topup_to_delegate can be

7

introduced for this, returning the provider and its top-up. If such a provider

is found, we delegate amount_to_delegate .

�� Otherwise, we try to find the active elligible provider with the highest

available space (which may be infinite). A function

find_active_elligible_provider_with_highest_space_to_delegate can be

created to do this. If such a provider is found, we delegate the amount

min(amount_to_delegate, provider.max_cap - provider.total_stake) .

For undelegation

All the steps below for selecting a provider from which to undelegate will need

the common function compute_amount_to_undelegate suggested in Can

choose an amount that can't be undelegated from a provider .

We start by defining initial_amount_to_undelegate = min(amount, max(5%

amount, 50)) . Then:

�� We try to find an inactive or uneligible provider such that

compute_amount_to_undelegate(initial_amount_to_undelegate,

salsa_stake) > 0 . A function

find_inactive_or_uneligible_provider_to_undelegate can be introduced

for this. If such a provider is found, we undelegate the amount

compute_amount_to_undelegate(initial_amount_to_undelegate,

salsa_stake) and we stop here.

�� Otherwise, we try to find the provider with the maximum top-up among

providers such that

compute_amount_to_undelegate(initial_amount_to_undelegate,

salsa_stake) > 0 . A function find_provider_max_topup_to_undelegate

can be introduced for this, returning the provider and its top-up. If such a

provider is found, we undelegate the amount

compute_amount_to_undelegate(initial_amount_to_undelegate,

salsa_stake) and we stop here.

�� Otherwise, we try to find the provider with the highest Salsa stake such that

compute_amount_to_undelegate(initial_amount_to_undelegate,

salsa_stake) > 0 . A function

find_provider_max_salsa_stake_to_undelegate can be introduced for this.

If such a provider is found, we undelegate the amount

8

compute_amount_to_undelegate(initial_amount_to_undelegate,

salsa_stake) .

Resolution notes

The issue is not entirely and correctly solved. Below we list the remaining

problems.

Remaining issue 1� In get_provider_to_delegate_and_amount , if no provider is

found with a sufficiently big free space to delegate the initial amount entirely,

then no EGLD are delegated, although the recommendation suggests calling a

method find_active_elligible_provider_with_highest_space_to_delegate

to delegate the maximal possible amount.

Therefore, the delegation follows an all-or-nothing principle: either the

prescribed amount of EGLD is delegated, or 0 EGLD is delegated.

There is the analogous problem with undelegations, i.e. no EGLD are

undelegated if it is not possible to undelegate the prescribed EGLD amount

entirely, however it would be possible to undelegate some EGLD, by using the

method find_provider_max_salsa_stake_to_undelegate from the

recommendation.

Recommendation: We can stick to the original recommendation, i.e. introducing
the functions

find_active_elligible_provider_with_highest_space_to_delegate and

find_provider_max_salsa_stake_to_undelegate and calling them in

get_provider_to_delegate_and_amount and

get_provider_to_undelegate_and_amount .

Remaining issue 2� From the recommendation, calculating the variable

dif_topup is now useless, because we can remove the difference of top-ups

from the selection algorithm, to get a simpler and more efficient algorithm.

Recommendation: As described in recommendation, we can remove the logic

for computing differences of top-ups, when selecting providers for delegations

and undelegations.

Remaining issue 3� The function compute_amount_to_undelegate is

unnecessarily complicated compared to the suggested function in Can choose

an amount that can't be undelegated from a provider , and this complexity

might lead to an unintended amount of EGLD to undelegate in some case.

9

More precisely, compute_amount_to_undelegate takes top-ups min_topup and

max_topup as arguments, and in case there difference is 0, dif_topup =

max_topup - min_topup == 0 , it returns that the full amount of EGLD given as

argument should be undelegated.

This was implemented because compute_amount_to_undelegate is used in two

separate contexts: once for the normal selection algorithm where top-ups

matter, but also once for uneligible and inactive providers, in which case we

don’t care about top-ups and hence arguments max_topup = min_topup = 0

are provided. This is for this reason that in compute_amount_to_undelegate , we

interpret dif_topup == 0 as if the selected provider was unelligible or inactive,

in which case it is desired to undelegate the initial amount entirely.

However, the side effect of this logic is that, in case of an eligible and active

provider selected by the normal procedure, we could have dif_topup == 0 ,

and in this case we would undelegate the initial amount entirely from the

provider, which is a discontinuous and unexpected behavior.

Example: If the initial amount to undelegate is 1000 EGLD, and the selected

provider from which to undelegate has more than 1000 EGLD staked, then we

would have the following discontinuous behavior:

If dif_topup > 0 , 5% of the initial amount is undelegated: 50 EGLD.

If dif_topup == 0 , all initial amount is undelegated: 1000 EGLD.

Recommendation: To solve this, we can follow the recommendation, for one

thing by avoiding the dif_topup computations as explained in the previous

issue, and moreover by keeping compute_amount_to_undelegate as simple as

possible, to avoid handling several cases (uneligible and eligible providers) in

the same function.

10

C6� Can add as provider an address which is not a provider

Severity: Medium Status: Won't fix

Location

providers.rs
add_provider

Description

Current behavior: Any address can be added in the list of providers.

Expected behavior: Only the addresses of providers' contracts should be

added in the list of providers. Otherwise, if a wrong address is added, then it

might be impossible to call the expected endpoints to refresh the delegation

data, and in turn users won't be able to undelegate and withdraw their funds

from any provider.

Worst consequence: An erroneous provider address is added in the list of

providers but the contract's owner is unable to quickly remove the incorrect

address e.g. if he lost his keys, is ill or has no access to a computer. Then

during this time all users can't withdraw their funds.

Recommendation

In add_provider , to ensure that the address is a legitimate provider, we

recommend adding the following checks:

That the address is on the metachain. This can be done by checking

self.blockchain().get_shard_of_address(address) ==

METACHAIN_SHARD_ID , where METACHAIN_SHARD_ID is the constant u32::MAX .

That the address is the one of a provider, by calling an endpoint that only a

provider can have on the metachain, e.g. getContractConfig . For this, we

can add a new boolean argument add_provider_in_callback to the

callback get_contract_config_callback . Then, in

get_contract_config_callback , if the asynchronous call was successful

and if add_provider_in_callback == true , we can insert the address of the

provider in the list of providers.

11

Resolution notes

Remaining issue: The 2nd point of the recommendation has not been followed.

Therefore it is possible that by mistake, the owner whitelists an address which

is on the metachain, but is not the address of a provider. This would result in

failed delegations.

Recommendation: We can follow the 2nd point of the recommendation.

12

C9� Min top-up for undelegation and max top-up for delegation not

computed for all active providers

Severity: Medium Status: Won't fix

Location

service.rs
get_provider_to_delegate_and_amount

Description

Current behavior: When selecting a provider, the minimum top-up for

undelegation and the maximum top-up for delegation are computed only

among active providers which have free space.

Expected behavior: Both should be computed among all active providers,

regardless of whether they have free space or not. This is what is expected by

the project, because:

The undelegation amount is chosen such that the selected provider's top-

up does not go below the minimum top-up between all active providers.

The delegation amount is chosen such that the selected provider's top-up

does not go above the maximum top-up between all active providers.

Worst consequence: Wrong top-up computations can lead to too few EGLD

delegated or undelegated.

Example: Let's consider 3 providers, each with 1 node, such that:

Provider 1 has no free space, and a top-up of 500,

Provider 2 has free space, and a top-up of 1500,

Provider 3 has free space and a top-up of 2000.

Then, when undelegating EGLD, get_provider_to_delegate_and_amount will

choose provider 3 to perform the undelegation. Then, the computed

min_topup will be 1500, which is the top-up of provider 2. However, it it was

correctly computed, min_topup should would have been 500, i.e. the top-up of

provider 1. Consequently, 2000 � 1500 � 500 EGLD will be undelegated,

instead of 2000 � 500 � 1500 EGLD.

13

Recommendation

We recommend following the recommendation to EGLD (un)delegated might be

much smaller than EGLD waiting for (un)delegation, as it resolves this issue as

well since there is would be no computation of top-ups difference anymore.

Alternatively, we recommend making the following changes in

get_provider_to_delegate_and_amount :

Renaming max_topup_delegate into max_topup , and updating it no matter if

the provider has free space or not.

Renaming the current variable min_topup into min_topup_delegate . It is the

top-up of the provider selected for delegation.

Introducing a new min_topup variable, which is the minimum top-up among

all active providers, and thus updating it no matter if the provider has free

space or not.

As a result of these changes, the values min_topup_delegate and max_topup

will be used for determining the delegation amount, while the values

max_topup_undelegate (already correctly implemented) and min_topup will be

used for determining the undelegation amount.

Resolution notes

Remaining issue: The recommendation is not entirely followed, because for

delegations the maximal top-up is still computed among providers which have
free space, although it should be computed among all providers.

Recommendation: We suggest following the recommendation. In particular, the

main solution consists in following the recommendation to EGLD (un)delegated

might be much smaller than EGLD waiting for (un)delegation, which simply

removes all the computations of top-ups differences.

14

C11� get_provider_to_delegate_and_amount is unnecessarily

complex

Severity: Medium Status: Won't fix

Location

service.rs
get_provider_to_delegate_and_amount

Description

Current behavior: The function get_provider_to_delegate_and_amount is

unnecessarily complex and performs multiple independent logics, one for

selecting a provider in which to delegate and one for selecting a provider from

which to undelegate.

Expected behavior: The logic for selecting providers in which to delegate and

from which to undelegate should be separated, as they are independent.

Moreover, each of these logics should be made as simple as possible. This is

because complex functions increase the risks of introducing errors and any

error there could result in wrong funds allocation or even losses of funds.

Recommendation

We recommend to replace get_provider_to_delegate_and_amount with two

functions: get_provider_to_delegate_and_amount , for delegation, and

get_provider_to_undelegate_and_amount , for undelegation.

Each of these functions can then be further broken down into smaller, more

manageable parts using helper functions. These helpers functions are those

detailed in the recommendation of EGLD (un)delegated might be much smaller

than EGLD waiting for (un)delegation.

Resolution notes

Remaining issue: Although the selection of providers for delegations and

undelegations has been separated in two methods

get_provider_to_delegate_and_amount and

get_provider_to_undelegate_and_amount as recommended, these methods

15

are still highly complex and, unlike the suggestion from the recommendation,

they have not be broken down into smaller and simpler functions.

Recommendation: It would be good to aim for simpler functions, following the

break down into smaller functions from the recommendation of EGLD

(un)delegated might be much smaller than EGLD waiting for (un)delegation.

