
1

Security Audit Report

AshPerp trading (2)
MultiversX smart contract

by
on June 1, 2024

2

Table of Contents

Disclaimer 3

Terminology 3

Objective 4

Audit Summary 5

Inherent Risks 6

Code Issues & Recommendations 9

C14: Cannot unregister trades for a frozen trader 9

Test Issues & Recommendations 11

3

Disclaimer
The report makes no statements or warranties, either expressed or implied,

regarding the security of the code, the information herein or its usage. It also

cannot be considered as a sufficient assessment regarding the utility, safety

and bugfree status of the code, or any other statements.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

Terminology
Code: The code with which users interact.

Inherent risk: A risk for users that comes from a behavior inherent to the

code's design.

Inherent risks only represent the risks inherent to the code's design, which are

a subset of all the possible risks. No inherent risk doesn’t mean no risk. It only

means that no risk inherent to the code's design has been identified. Other kind

of risks could still be present. For example, the issues not fixed incur risks for

the users, or the upgradability of the code might also incur risks for the users.

Issue: A behavior unexpected by the users or by the project, or a practice that

increases the chances of unexpected behaviors to appear.

Critical issue: An issue intolerable for the users or the project, that must be

addressed.

Major issue: An issue undesirable for the users or the project, that we strongly

recommend to address.

Medium issue: An issue uncomfortable for the users or the project, that we

recommend to address.

Minor issue: An issue imperceptible for the users or the project, that we advise

to address for the overall project security.

4

Objective
Our objective is to share everything we have found that would help assessing

and improving the safety of the code:

1. The inherent risks of the code, labelled R1, R2, etc.

2. The issues in the code, labelled C1, C2, etc.

3. The issues in the testing of the code, labelled T1, T2, etc.

4. The issues in the other parts related to the code, labelled O1, O2, etc.

5. The recommendations to address each issue.

5

Audit Summary

Initial scope

Repository: https://github.com/ashswap/ash-tinder-sc

Commit: e2647d578a3e294f2623cf13156bc1730884b7ec
MultiversX smart contract path: ./contracts/trading/

Final scope

Repository: https://github.com/ashswap/ash-tinder-sc

Commit: 37feaa4cba1c0f224d39c86ec8ae08d95ad04a82
MultiversX smart contract path: ./contracts/trading/

10 inherent risks in the final scope

1 issue in the final scope

23 issues reported in the initial scope and 1 remaining in the final scope:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 1 0 0 0 0 0

Major 5 0 0 0 0 0

Medium 9 1 0 1 0 0

Minor 7 0 0 0 0 0

https://github.com/ashswap/ash-tinder-sc
https://github.com/ashswap/ash-tinder-sc

6

Inherent Risks

R1: Users might not obtain their due profit when they close their

position.

This is because the Vault might fail to pay the profits e.g. in the following

cases:

The vault’s funds are insufficient to pay the profits.

We have already reached the maximum allowed daily loss of the Vault, a

parameter which is chosen by the owner.

R2: Users might not be able to close their position and would have to

continue to pay the borrowing fee.

This is because order execution is done by an oracle bot to close orders that,

for example, (1) can be inactive or (2) unable to provide the information

necessary to close orders.

R3: The borrowing fee per block might increase over time.

This is because:

The fee per block can be changed by the admins at any time.

The fee per block increases as the gap between the open interest of LONG

positions and SHORT positions widens.

R4: Users might not get their take profit executed whereas the

execution price was met and therefore would lose the expected

7

profit.

This is because order execution is done by an oracle bot that, for example, (1)

could miss the moment when the execution price was met or (2) could choose

a price worse than the market price.

R5: Users might not get their stop loss executed as soon as the

execution price is met and therefore would lose more than

expected.

This is because order execution is done by an oracle bot that, for example, (1)

could miss the moment when the execution price was met or (2) could choose

a price worse than the market price.

R6: Users might get liquidated whereas the liquidation price has not

been met yet.

This is because liquidations are executed by an oracle bot that could choose a

price worse than the market price.

R7: Users might not get their limit order and stop order executed

whereas the execution price was met.

This is because order execution is done by an oracle bot that, for example, (1)

could miss the moment when the execution price was met or (2) could choose

a price worse than the market price.

R8: Users pay open fees even if their order could not be opened, and

pay closing fees even if their order could not be closed.

8

This is because the oracle bot always takes the fee, no matter if it successfully

fulfilled the user’s request to open or close the order. For example, failures in

opening the order can happen if the final price exceeds the user’s slippage, if

the total open interest exceeds the maximum allowed value on that market, of if

the market is paused.

R9: The owner can cancel trades anytime without traders or

liquidity providers earning profits.

This is because the owner has the ability to cancel any open trade, and in that

case, the contract will send back the collateral to the trader without computing

the profits or losses of the trade.

R10: Users might not obtain the expected fee discount and rebate.

This is because the calculation of trading volumes is done by external trusted

contracts which might perform wrong calculations, and these volumes

determine the discounts for NFTs owners and referred traders, as well as the

rebates for referrers.

9

Code Issues & Recommendations

Since the code is not open-source, only the remaining issues are published.

C14: Cannot unregister trades for a frozen trader

Severity: Medium Status: Won't fix

Location

contracts/trading/src/callback.rs
_unregister_trade

Description

Current behavior: If the trader’s wallet is frozen for a specific token and is in

the same shard as the contract, then the contract will fail to send back the

tokens to the trader when closing the order. This means:

The trade cannot be unregistered, in particular liquidated, thus the Vault

would not get her expected profits.

The owner cannot call force_close_trade_market .

Expected behavior: If a trader is frozen for a token and is in the same shard as

the contract, then the contract should not try to send the tokens to him. As this

is the case where the transaction would fail, and so trade cannot be liquidated

and the owner cannot execute force_close_trade_market .

Note that the transaction failure only happens if the trader is both frozen and in

the same shard, for example if his wallet is in another shard, the transaction

would not fail.

Recommendation

We recommend checking if the trader is frozen for the token that is going to be

sent and if he is in the same shard as the contract. In that case, we recommend

not sending back funds to the trader with that token because it would block the

contract and it is the trader’s responsibility to be able to receive transfers.

10

Verifying whether an account is frozen and in the same shard can be done as

in the MultiversX Bridge ETH smart contract:

fn is_account_same_shard_frozen(&self, sc_shard: u32,
 dest_address: &ManagedAddress, token_id: &TokenIdentifier
) -> bool {
 let dest_shard =
self.blockchain().get_shard_of_address(dest_address);
 if sc_shard != dest_shard {
 return false;
 }

 let token_data = self
 .blockchain()
 .get_esdt_token_data(dest_address, token_id, 0);
 token_data.frozen
}

https://github.com/multiversx/mx-bridge-eth-sc-rs/blob/8c1438e32cd44d93304cd3b9cef954940900ee16/multi-transfer-esdt/src/lib.rs#L134

11

Test Issues & Recommendations

Since the code is not open-source, only the remaining issues are published.

