
1

SECURITY AUDIT REPORT

OneDex liquidity-pools �2�
smart contract

by
on March 20, 2024

2

Table of Content

Disclaimer 3

Terminology 3

Audit Summary 4

Inherent Risks 5

Code Issues & Recommendations 7

3

Disclaimer
The report makes no statements or warranties, either expressed or implied,

regarding the security of the code, the information herein or its usage. It also

cannot be considered as a sufficient assessment regarding the utility, safety

and bugfree status of the code, or any other statements.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

Terminology
Inherent risk: A risk for users that comes from a behavior inherent to the smart

contract design.

Inherent risks only represent the risks inherent to the smart contract design,

which are a subset of all the possible risks. No inherent risk doesn’t mean no

risk. It only means that no risk inherent to the smart contract design has been

identified. Other kind of risks could still be present. For example, the issues not

fixed incur risks for the users, or the smart contracts deployed as upgradeable

also incur risks for the users.

Issue: A behavior unexpected by the users or by the project, or a practice that

increases the chances of unexpected behaviors to appear.

Critical issue: An issue intolerable for the users or the project, that must be

addressed.

Major issue: An issue undesirable for the users or the project, that we strongly

recommend to address.

Medium issue: An issue uncomfortable for the users or the project, that we

recommend to address.

Minor issue: An issue imperceptible for the users or the project, that we advise

to address for the overall project security.

4

Audit Summary

Scope of initial audit

Repository: https://github.com/onedex-x/onedex-sc/

Commit: 25984abc4de67907b1b811a7dd154b632ee0652f

Path to Smart contract: ./onedex-sc/

Scope of final audit

Repository: https://github.com/onedex-x/onedex-sc/

Commit: 834a2096eebdafde2f65744acee0e52f89fdb299

Path to Smart contract: ./onedex-sc/

Report objectives

�� Reporting all inherent risks of the smart contract.

�� Reporting all issues in the smart contract code.

�� Reporting all issues in the smart contract test.

�� Reporting all issues in the other parts of the smart contract.

�� Proposing recommendations to address all issues reported.

3 inherent risks in the final commit

0 issue in the final commit

4 issues reported from the initial commit and 0 remaining in the final commit:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 0 0 0 0 0 0

Major 1 0 0 0 0 0

Medium 2 0 0 0 0 0

Minor 1 0 0 0 0 0

https://github.com/onedex-x/onedex-sc/
https://github.com/onedex-x/onedex-sc/

5

Inherent Risks

R1� The safe prices provided by the contract are not fully

manipulation-resistant.

This is because, like any oracle price, the safe price can be manipulated to

some extent. Namely, if a token reserve is manipulated for some time, which is

easier to achieve for liquidity pools with low liquidity and volumes, then the

associated safe price would also be manipulated even if it is obtained by

averaging previous prices.

R2� A user might earn less by providing his tokens as liquidity than

by simply holding them in his wallet.

This is because an “impermanent loss” occurs as soon as the current price of

the pool differs from the initial price (at deposit time), but it can be

counterbalanced by swap fees earned by liquidity providers.

What is impermanent loss? If we don’t take into account the swap fees, when

a user buys tokens from the pool, the liquidity provider effectively sells his

tokens at all intermediate prices from the initial price to the current price. From

the perspective of the liquidity provider, this will be worst than holding all his

tokens and selling them at the current price.

Computing the impermanent loss. In OneDex, given a price ratio x between

the current price and the initial price, the impermanent loss is: 1 - 2 *

sqrt(x) / (1 + x) . From this, it can be seen that the bigger the price

variation, the higher the impermanent loss: when x = 1 , the impermanent loss

is 0 , and as x departs from 1 , the impermanent loss gets closer to 1 , i.e. a

100% loss.

R3� A liquidity provider is very unlikely to withdraw his tokens in the

6

same amounts as he initially deposited.

This is because:

When a liquidity provider deposits tokens, the amounts must be provided

according to the ratio of the two token’s reserves of the pool. In return, the

liquidity provider now owns a share of the pool, proportional to the amounts

of deposited tokens.

When users swap, the ratio of the pool’s reserves changes.

When the liquidity provider withdraws his share, tokens are taken from the

pool according to the ratio of the pool’s reserves, which might differ from

the initial ratio due to users’ swaps.

7

Code Issues & Recommendations

Since the smart contract code is not open-source, only the remaining issues

are published.

