
​MultiversX Multisig​
​MultiversX smart contract - Security audit by Arda​

​Repository: https://github.com/multiversx/mx-contracts-rs​
​Smart contract path:​​contracts/multisig​
​Initial commit:​​28d617fa761c7c8c057f56aa13eef0862fb2c47b​​(​​repository link​​)​
​Final commit:​​5478c6ed3c8cc998429b2d83f97347c553be8f87​​(​​repository link​​)​

​Issues​
​A.1.​ ​Any board member can add actions to an already existing​Solved Major
​batch, allowing him to (1) prevent the batch from ever being executed (by adding actions​
​to it) (2) possibly making unwanted action be executed (by front-running other board​
​members and adding actions before they sign).​

​Solution:​​Once a batch is created, we may forbid adding​​further actions to it.​

​A.2.​ ​Any board member can prevent an accepted cross-shard​Solved Medium
​action from being performed.​​This is because if he performs the action and provides a very​
​small gas quantity, the async call will fail on the other shard, and the call won’t revert, so the​
​action has been cleared from storage and can’t be performed again.​

​Note that a non-malicious board member could also simply make a mistake in the gas quantity​
​needed for the asynchronous call to be executed, leading to the same problem.​

​Solution:​​We suggest adding an optional minimum gas​​field in the action, which will be checked​
​in​​perform_action​​before launching the asynchronous​​call. In particular, this would be useful​
​for upgrading contracts, as upgrades are asynchronous calls as well.​

​A.3.​ ​If the quorum is decreased, undesired and outdated actions​Solved Medium
​can suddenly be performed.​​Indeed, upon performing an action,​​quorum_reached​​checks that​
​the number of signers is above the current value of the storage​ ​quorum​​.​

​So for example if an action which did not reach the quorum one year ago was not discarded​
​since then and forgotten, and now the quorum is decreased, it would become possible to​
​perform that action even if it is undesired.​

​Solution:​​We suggest making the quorum an internal field of the action, recorded when the​
​action is created, and used when trying to perform it.​

https://github.com/multiversx/mx-sdk-rs/blob/b0160312d19670c81b919f3029858e98f3c2228d/contracts/examples/multisig
https://github.com/multiversx/mx-contracts-rs/tree/0fd235fe4c8491ab086c4fd0903788d169f02583


​None​

​A.4.​ ​The endpoint​​sign_batch_and_perform​​will fail if it tries to​Solved Medium
​execute the actions, because of the following iteration:​

​for action_id in self.action_groups(group_id).iter() {​
​let _ = self.perform_action(action_id);​

​}​

​Namely, at each iteration, inside​​perform_action​​the​​action is cleared from​
​action_groups(group_id)​​, reducing the size of this​​mapper, hence the iteration will reach​
​some empty actions, and performing them will fail.​

​Solution:​​Before performing each action, we recommend​​storing all the​​action_id​​from​
​action_groups(group_id)​​in a​​ManagedVec​​variable,​​and then in a second loop, we can​
​perform them.​

​A.5.​ ​Error-prone argument​​group_id​​of​​propose_batch​​.​​Users​Solved Medium
​must choose a​​group_id​​to create a batch, which may not be evident, and there is also the risk​
​that the group id is mistakenly chosen to be the one of an existing batch even though the user​
​wanted to create a new batch.​

​Solution:​​If the solution to issue A.1. is followed,​​i.e. users can’t add actions to existing batches,​
​then we can simply remove the​​group_id​​argument and​​automatically generate this id from a​
​counter​​counter_group_id​​which gets incremented each​​time a batch is created.​

​In case the solution to issue A.1. is not followed and users can still add actions to existing​
​batches, then we can make the​​group_id​​argument optional:​

​-​ ​If not provided, we automatically generate a new id using a counter as in the previous​
​paragraph.​

​-​ ​If provided, we check that the​​group_id​​corresponds​​to an existing batch, and we add​
​actions there.​

​A.6.​ ​A​​SendTransferExecuteEsdt​​action will fail to be executed if​Solved Medium
​no gas limit was provided,​​because it consumes all the gas left as gas limit, which​
​immediately leaves the contract since we are doing a​​TransferExecute​​, and thus there is no​
​gas left to terminate the contract’s call.​

​Solution:​​We suggest proceeding as for​​SendTransferExecuteEgld​​, i.e. when there is no gas​
​limit provided, we use a default value of​​gas_for_transfer_exec​​.​​Moreover, we suggest​
​adding a unit test where a​​SendTransferExecuteEgld​​action with no gas limit is performed.​



​None​

​None​

​A.7.​ ​An endpoint required from the functional specifications is​Solved Medium
​missing in the implementation.​​Namely, it is expected that the multisig has an endpoint that​
​board members can call to sign and, if possible, execute the action (or batch) in the same​
​transaction. However,​​sign_and_perform​​and​​sign_batch_and_perform​​do not fulfill this​
​purpose as they fail if the action or batch can’t be performed.​

​Solution:​​In both​​sign_and_perform​​and​​sign_batch_and_perform​​,​​we suggest performing​
​the execution only in case the caller has the right to perform actions and all actions have​
​reached quorum.​

​A.8.​ ​In​​sign_batch_and_perform​​, some actions of the batch​Solved Medium
​might be executed and others not​​, although​​the user expects that all actions of the batch are​
​executed, or none of them. This is because the following iteration will execute actions which​
​have reached quorum and do nothing for the others:​

​for​​action_id​​in​​self.action_groups(group_id).iter()​​{​
​if​​self.quorum_reached(action_id)​​{​

​let​​_​​=​​self.perform_action(action_id);​
​}​

​}​

​Solution:​​We recommend first verifying in a 1st iteration​​that all actions have reached quorum,​
​and then, if it is the case, performing all the actions sequentially in a 2nd iteration.​

​A.9.​ ​It is expected from functional specifications that no​Solved Medium
​asynchronous call can be included in a batch, but an upgrade action can be any action of​
​a batch.​​This is problematic since contract upgrades are asynchronous calls. In particular, if an​
​upgrade action is included in a batch, it would kill the execution in the middle of the batch.​

​Solution:​​When creating a batch in​​propose_batch​​,​​we suggest also checking that each action​
​is not a contract upgrade.​

​A.10.​ ​get_pending_action_full_info​​will fail if too many actions​Solved Medium
​have been created in the multisig​​, because this view must iterate over all past action indices:​

​let action_last_index = self.get_action_last_index();​
​for action_id in 1..= action_last_index { ... } ​



​Solution:​​We suggest adding an optional​​offset​​argument​​to​
​get_pending_action_full_info​​to iterate over a fixed​​number of past actions.​

​Optionally, we can also add another view function that takes actions indices​​action_id_start​
​and​ ​action_id_start​​to iterate within a specific range of action ids.​

​A.11.​ ​Actions within a batch are not necessarily executed​Solved Medium
​sequentially.​​This is because the check that the called contract is intra-shard, which is present​
​for a​​SendTransferExecuteEgld​​action, is absent for a​​SendTransferExecuteEsdt​​action. If​
​the action calls a contract on a remote shard, the action would be executed after subsequent​
​synchronous actions.​

​Solution:​​In​​propose_batch​​, we recommend adding the​​check that the called contract is on the​
​same shard for a​​SendTransferExecuteEsdt​​action exactly​​as done for a​
​SendTransferExecuteEgld​​action.​

​A.12.​ ​The multisig can’t work anymore if it has too many board​Solved Medium
​members.​​Indeed, performing actions would run out of gas when iterating over board members.​

​Solution:​​We suggest imposing a hard bound on​​​​num_board_members​​e.g.​
​​​MAX_BOARD_MEMBERS = 30.​

​A.13.​ ​An action which is part of a batch can be discarded​Solved Medium
​although other actions remain in the batch, possibly making users sign unexpected​
​batches.​

​Example: Alice and Bob share a multisig, which manages SC A (holding Alice’s funds) and SC​
​B (holding Bob’s funds). Alice wants to steal Bob’s funds:​

​1.​ ​Alice creates a batch with 2 actions representing an exchange of funds: first a transfer​
​from SC A to Bob, and second a transfer from SC B to Alice.​

​2.​ ​When Bob is about to sign, Alice front-runs his transaction: she unsigns only the 1st​
​action (transfer from SC A to Bob) and discards the action.​

​3.​ ​Bob’s signature arrives to the contract.​
​4.​ ​Alice executes the batch, which transfers Bob funds (in SC B) to Alice.​

​Solution:​​Once an action is discarded from a batch,​​we recommend considering the batch as​
​aborted and not allowing performing it. For this we can associate a boolean​​batch_aborted​
​to each batch which when​​true​​, makes signing and performing the batch fail.​



​A.14.​ ​Upgrading the contract with a new​​quorum​​and​​board​​value​Solved Medium
​bypasses the multisig consensus.​​This is because​​upgrade​​changes the value of the quorum​
​and whitelists new board members.​

​Solution:​​We suggest not overwriting the quorum and​​not changing the board members in​
​upgrade​​.​

​A.15.​ ​If there are too many signers for a proposal, it can’t be​Solved Medium
​performed.​​This is because​​get_action_valid_signer_count​​iterates over all signers,​
​including old board members who were removed.​

​Solution:​​We suggest adding a public endpoint​​unsign_for_outdated_board_members​​which​
​takes a list of​ ​action_id​​and addresses, check that the addresses have no role, and then​
​remove their signatures from​ ​get_action_valid_signer_count(action_id).​

​A.16.​ ​Missing checks on actions when creating a batch.​​When​Solved Minor
​creating a batch, the checks on actions are not consistent with the checks made when creating​
​the action without a batch:​

​-​ ​For a​​SendTransferExecuteEsdt​​action, no check is​​made within a batch, although in​
​propose_transfer_execute_esdt​​it is checked that the​​amount of tokens to send is​
​non-zero.​

​-​ ​For a​​SendTransferExecuteEgld​​action, no check is​​made within a batch, although in​
​propose_transfer_execute_esdt​​it is checked that either​​the EGLD amount to send is​
​non-zero, or that the contract call is not empty.​

​Solution:​​In​​propose_batch​​, we suggest adding the​​missing checks which are made when​
​proposing an action without a surrounding batch.​

​A.17.​ ​No time limit to perform actions: an outdated action can​won't solve Minor
​be performed 1 year after it is proposed in case it reaches quorum later.​​Indeed, as long as​
​the action is not discarded, which requires​​all​​signers​​to withdraw their signature, an action can​
​be triggered.​

​However, certain actions may be undesired if they occur too long after they were proposed, e.g​
​buying a token 1 year after the initial proposal would lead to a completely different swap output​
​than expected.​

​Similarly, when a board member is added, he is able to vote on past proposals, which is not​
​expected such proposals were created given the quorum and board members at a past time,​
​and might not be relevant for the new board member.​

​Solution:​​We could add a time limit for performing the action, as an internal field of the action.​



​None​

​None​

​A.18.​ ​Storage key prefix of the other.​​The storage name​​"user"​​is a​Solved Minor
​prefix of another storage name​​"user_role"​​, which is bad practice as in certain situations it can​
​lead to storages overwriting each other (see​​MultiversX doc​​).​

​In commit 0fd235fe4c8491ab086c4fd0903788d169f02583, a new prefix was introduced:​
​"quorum" is a prefix of "quorum_for_action".​

​A.19.​ ​3 Mandos tests do not pass.​Solved Minor

​Solution:​​We suggest correcting these 3 tests.​

​A.20.​ ​Syntax inconsistency.​​There is some syntax inconsistency in​Solved Minor
​propose_transfer_execute_esdt​​. Unlike other endpoints​​to propose actions which first define​
​an instance​​call_data​​of the struct​​CallActionData​​before passing it to the method​
​propose_action​​(like​​propose_transfer_execute​​and​​propose_async_call​​)​

​let call_data = CallActionData { ... };​
​self.propose_action(Action::SendAsyncCall(call_data))​

​propose_transfer_execute_esdt​​rather directly build​​the action as the argument of the​
​method​​propose_action​​:​

​self.propose_action(Action::SendTransferExecuteEsdt { ... })​

​This syntax difference is a bit misleading and having a consistent way to write all endpoints to​

​propose actions would simplify the understanding of the code.​

​Solution:​​In propose_transfer_execute_esdt, we suggest first defining​​call_data​​and providing​
​it as an argument to​​propose_action​​.​

​Disclaimer​

​The report makes no statements or warranties, either expressed or implied, regarding the​
​security of the code, the information herein or its usage. It also cannot be considered as a​
​sufficient assessment regarding the utility, safety and bugfree status of the code, or any other​

https://docs.multiversx.com/developers/developer-reference/sc-annotations/#storage_setkey


​statements. This report does not constitute legal or investment advice. It is for informational​
​purposes only and is provided on an "as-is" basis. You acknowledge that any use of this report​
​and the information contained herein is at your own risk. The authors of this report shall not be​
​liable to you or any third parties for any acts or omissions undertaken by you or any third parties​
​based on the information contained herein.​


