
1

Security Audit Report

AshSwap farm
MultiversX smart contract

by
on December 15, 2023



2

Table of Contents

Disclaimer 3

Terminology 3

Objective 4

Audit Summary 5

Inherent Risks 6

Code Issues & Recommendations 7

C6: Can’t withdraw if farm router not registered in rewarder 7

C15: Duplicated logic to round timestamp to start of the week 8



3

Disclaimer
The report makes no statements or warranties, either expressed or implied,

regarding the security of the code, the information herein or its usage. It also

cannot be considered as a sufficient assessment regarding the utility, safety

and bugfree status of the code, or any other statements.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

Terminology
Code: The code with which users interact.

Inherent risk: A risk for users that comes from a behavior inherent to the

code's design.

Inherent risks only represent the risks inherent to the code's design, which are

a subset of all the possible risks. No inherent risk doesn’t mean no risk. It only

means that no risk inherent to the code's design has been identified. Other kind

of risks could still be present. For example, the issues not fixed incur risks for

the users, or the upgradability of the code might also incur risks for the users.

Issue: A behavior unexpected by the users or by the project, or a practice that

increases the chances of unexpected behaviors to appear.

Critical issue: An issue intolerable for the users or the project, that must be

addressed.

Major issue: An issue undesirable for the users or the project, that we strongly

recommend to address.

Medium issue: An issue uncomfortable for the users or the project, that we

recommend to address.

Minor issue: An issue imperceptible for the users or the project, that we advise

to address for the overall project security.



4

Objective
Our objective is to share everything we have found that would help assessing

and improving the safety of the code:

1. The inherent risks of the code, labelled R1, R2, etc.

2. The issues in the code, labelled C1, C2, etc.

3. The issues in the testing of the code, labelled T1, T2, etc.

4. The issues in the other parts related to the code, labelled O1, O2, etc.

5. The recommendations to address each issue.



5

Audit Summary

Initial scope

Repository: https://github.com/ashswap/ash-exchange-sc

Commit: 50757b865b7dfb41c9084b90682dac90e01c4b71
MultiversX smart contract path: ./contracts-0.39.8/dex/farm/

Final scope

Repository: https://github.com/ashswap/ash-exchange-sc

Commit: e3ff87288b2fd26dea8edd7c7b02a07cd81d19e6
MultiversX smart contract path: ./contracts-0.39.8/dex/farm/

2 inherent risks in the final scope

2 issues in the final scope

16 issues reported in the initial scope and 2 remaining in the final scope:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 0 0 0 0 0 0

Major 4 0 0 0 0 0

Medium 3 0 0 1 0 0

Minor 9 0 0 1 0 0

https://github.com/ashswap/ash-exchange-sc
https://github.com/ashswap/ash-exchange-sc


6

Inherent Risks

R1: The more often users claim rewards, the less boosted rewards

they earn.

This is because the boost of a farm position does not decrease until the user

claims his rewards. It is even possible to maintain a boosted position beyond

the veASH lock expiry. For example, if a user boosts his farm token with veASH

locked for 1 year, and only claims 5 years later, then he will earn boosted

rewards as if he had veASH locked for 1 year for the past 5 years.

R2: When users send a boosted farm token to other users, they may

never be able to get back their boost used by that token.

This is especially problematic if a user who sent his boosted farm token

intended to use this boost later for his other farm tokens. This is because as

long as the recipient does not claim, the boost used by that farm token would

not decrease but still count as being used by the user, thereby reducing the

remaining boost available for his other farm tokens.



7

Code Issues & Recommendations

Since the code is not open-source, only the remaining issues are published.

C6: Can’t withdraw if farm router not registered in rewarder

Severity: Medium Status: Won't fix

Description

Users are unable to withdraw if the router is not registered in the rewarder.

Indeed, when a user withdraws, the farm calls the rewarder method

mint_tokens , which asks the farm router if the caller contract is a farm. So if

the address of the farm router is not set in the rewarder, then the transaction

will fail.

Recommendation

We recommend implementing the emergency withdraw solution from C8:

generate_ash_rewards can reach gas or API limits and users can’t withdraw, as

this solution incidentally resolves this issue as well.

Alternatively, before allowing users interactions in resume , the farm can

check that the farm router is set in the rewarder, and that it matches the

address of the farm’s owner.



8

C15: Duplicated logic to round timestamp to start of the week

Severity: Minor Status: Won't fix

Location

contracts-0.39.8/dex/farm/src/lib.rs

Description

The logic to compute the timestamp of the start of the week is duplicated

multiple times across the contract. This is error-prone as if a future change is

needed, the developer will have to apply the modification at several different

locations.

Recommendation

We recommend implementing a helper method timestamp_to_start_of_week
to compute the timestamp of the start of the week.




