
MultiversX Paymaster
MultiversX smart contract - Security audit by Arda

Repository: https://github.com/multiversx/mx-contracts-rs
Smart contract path: contracts/paymaster​
Initial commit: 428c8dbe2e2f4296fb8c3bff90678d5ac28f9b39​
Final commit: d857fedafa2a18ad59eca85ac3ba7cfb9d77dee1​ ​

Issues

A.1. If the forwarded call fails, the user’s funds are lost. This is Solved Critical
because in the callback transfer_callback, we read the back transfers in order to catch all
payments and send them back to the user, however for failed asynchronous calls back transfers
are empty. Rather, the initial payments which are returned to the Paymaster SC are present in
the call inputs.

Solution: In transfer_callback, in order to determine the payments to send back to the
user, we suggest:

-​ If the asynchronous call succeeded, we get payments from back transfers.
-​ If the asynchronous call failed, we get payments from arguments given to the callback

function.

We further suggest adding a unit test to verify that the user correctly receives his payment when
the transaction has failed.

A.2. BackTransfers do not fully work with cross-shard async call v2. So in Solved Major
case of a cross-shard call, the user might lose tokens as they would not be caught in the
callback and not sent back to the user.

Moreover, tokens stuck in the contract can further be drained by any user whose tx to the
Paymaster performs a built-in function call.

Solution: We recommend checking that the callee is in the same shard. There would be 1
paymaster SC deployed per shard.

A.3. User can’t protect against too small gas amounts provided by Solved Major
relayer. Namely, a relayer could provide a too small amount of gas for the async call to succeed.
The call would fail, and the relayer would have taken the fee payment.

Solution: We recommend adding a gas limit argument to the endpoint forward_execution,
that the user can set to protect himself. We would require in the endpoint that the gas left is
greater than this limit.

A.4. Transfers back from SC on remote shards will fail if SC is not Solved Medium
payable. Indeed, for cross-shard calls, only the last payment from callee to caller is authorized,
while the others are forbidden (unless the caller SC is payable).

Solution: We recommend having 1 Paymaster SC per shard, and enforce that calls are made to
SC in same shard (as in A.1.)

A.5. The Paymaster SC does not send any token back to the user in Solved Medium
case of a successful transaction. So for example in the context of a gas-less swap, if we call
xExchange pool to make a swap, the Paymaster SC does not send the output back to the user.
This is because right now, the Paymaster only executes the SC endpoint and sends nothing
back to the user.

Solution: For the purpose of gas-less swap, we suggest introducing a new SC which takes care
of making the swap (and other operations if needed) and sending the tokens to the user. The
Paymaster SC would then call that endpoint.

A.6. There is an obsolete //TODO comment in transfer_callback. Solved Minor

Solution: We recommend removing it.

A.7. There is no test for the case where the async call of forward_call Solved Minor
fails, to check that the user gets back his payments as expected.

A.8. Misleading comment can be deleted: Solved Minor

/// An empty contract. To be used as a template when starting a new

contract from scratch.

A.9. Unnecessary sc_print in the callback transfer_callback. Solved Minor

A.10. A safety check in forward_execution that the payment Not Solved Minor

length is smaller than a constant MAX_PAYMENTS_LENGTH would prevent some edge cases

from happening if the number of payments is too big:

-​ Could make forward_call run out of gas when calling remove, and in this case the

relayer loses his gas fees.

-​ Could make transfer_callback run out of gas when trying to send all payments

back to the user, and in this case the user has lost funds.

A.11. The const ESDT_TRANSFER_FUNC_NAME is useless (at Not Solved Minor

review commit 18a6ad3cf8cdcf30e9ab86e13356174105ab04a1).

Inherent Risks

1.​ A user pays the relayer fee even if their smart contract call fails.

Disclaimer

The report makes no statements or warranties, either expressed or implied, regarding the
security of the code, the information herein or its usage. It also cannot be considered as a
sufficient assessment regarding the utility, safety and bugfree status of the code, or any other
statements. This report does not constitute legal or investment advice. It is for informational
purposes only and is provided on an "as-is" basis. You acknowledge that any use of this report
and the information contained herein is at your own risk. The authors of this report shall not be
liable to you or any third parties for any acts or omissions undertaken by you or any third parties
based on the information contained herein.

	MultiversX Paymaster
	Issues
	Inherent Risks
	1.​A user pays the relayer fee even if their smart contract call fails.

	Disclaimer

