
1

Security Audit Report

PulsarMoney smart-
payments
smart contract

by
on October 4, 2023

2

Table of Content

Audit Summary 3

Code issues & Recommendations 4

C1: No user control over max total tax paid 4

C2: amount_per_interval formula can introduce a significant total fee 6

C3: Receiver might lose up to 1% depending on how he claims 7

C4: Payment creation fails if fee is 0 8

C5: Payment and Cancel tokens identifiers can be changed 9

C6: Payment and Cancel token identifiers can take invalid values 10

C7: Fee value can exceed the maximum tolerated 11

C8: Unnecessarily complex logic to get token attributes 12

C9: Duplication of the fee denominator value 13

Test issues & Recommendations 14

T1: Mandos tests fail 14

Disclaimer 15

3

Audit Summary

Scope

Repository: https://github.com/astrarizon/pulsar-contract

Commit: a69e7234c717e2392f33659c53cbd51ffb9416db
Path to Smart contract: ./

Report objectives

1. Reporting all issues in smart contract code alongside recommendations

2. Reporting all issues in smart contract test alongside recommendations

3. Reporting all other issues alongside recommendations

Issues

Number of issues reported and issues remaining at last reviewed commit

9ecc80bbb7c2db10eed321d12f262f755049dc66:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 1 0 0 0 0 0

Major 1 0 0 0 0 0

Medium 3 0 0 0 0 0

Minor 4 1 0 0 0 0

https://github.com/astrarizon/pulsar-contract

4

Code issues & Recommendations

C1: No user control over max total tax paid

Severity: Critical Status: Fixed

Location

src/pulsar_payment.rs
create

Description

A user cannot currently revert his create transaction if the total tax effectively

paid is higher than a maximum total tax the user is willing to pay.

This is particularly important because:

1. The owner of the contract can change the fee percentage to any value

between the moment a user signs a create transaction and the moment this

transaction is executed by the blockchain.

2. The rounding errors that might occur at payment creation are taken by the

protocol as part of the fee, and in some cases represent more than 50% of the

payment amount!

For example, if we assume the protocol fee is 0% and a user creates a payment

of 50,000 USDC (6 decimals) to 163 receivers over 5 years splitted monthly,

then:

amount_per_interval = 50000 * 10^6 / (60*60*24*30*60) / 163 *
60*60*24*30
 = 2592000

And so the 163 receivers will receive a total of:

total_received = amount_per_interval * 60 * 163
 = 25349760000

which corresponds to 25,349 USDC. So the total fee is 49% of the total

payment amount.

5

Recommendation

Adding a max_fee: BigUint parameter to create endpoint, that would

represent the maximum fee percentage the user would be willing to pay.

Then requiring the total tax paid by the payment creator (including protocol tax

and rounding error tax) to be lower than the maximum fee percentage

multiplied by the total payment amount.

6

C2: amount_per_interval formula can introduce a significant total

fee

Severity: Major Status: Fixed

Location

src/pulsar_payment.rs
create

Description

The formula to compute amount_per_interval is currently the following:

let amount_per_interval = amount_post_tax / interval_seconds.clone()
/ BigUint::from(receivers.len()) * release_request.interval_seconds;

In the example given in issue No user control over max total tax paid, the

rounding error introduced by the formula would introduce a total fee of 49%.

Because of this and assuming issue No user control over max total tax paid is

fixed, many create transactions would probably fail because the effective fee

would be higher than the max fee allowed by the user.

This would make the creation of payment very difficult.

Recommendation

Rewritting amount_per_interval formula to only have one division:

let amount_per_interval = release_request.amount.clone() *
(FEE_DENOMINATOR - self.fee().get()) *
release_request.interval_seconds / (BigUint::from(FEE_DENOMINATOR) *
interval_seconds.clone() * BigUint::from(receivers.len()));

There will still be a small rounding error, but it will be limited to 0.001% of the

release request amount.

7

C3: Receiver might lose up to 1% depending on how he claims

Severity: Medium Status: Fixed

Location

src/pulsar_payment.rs
claim_release

Description

If a sender sends 100,999 tokens to a receiver, the receiver receives 1000

payment tokens.

If he sends the 1000 payment tokens to the claim_release method, he would

receive all the 100,999 tokens.

If he sends only 1 payment token to the claim_release method and repeats

this 1000 times, he will receive 1000 x 100,999 / 1000 = 100,000 tokens and

will lose 999 tokens, which represent ~1% of the total amount of tokens he

should have received.

Recommendation

Requiring at payment creation that the release.amount of the following

formula:

let claimable_amount = amount * claimable_intervals *
release.amount.clone() / BigUint::from(ONE_PAYMENT_TOKEN);

is divisible by ONE_PAYMENT_TOKEN (1000).

8

C4: Payment creation fails if fee is 0

Severity: Medium Status: Fixed

Location

src/pulsar_payment.rs
create

Description

When creating a payment, if the fee percentage is set to 0, then the total fee

(tax) will be 0, and so the tax transfer will fail.

Recommendation

Only transfer the tax if it is greater than 0.

9

C5: Payment and Cancel tokens identifiers can be changed

Severity: Medium Status: Fixed

Location

src/pulsar_payment.rs
init

Description

Cancel and Payment tokens identifiers are set at contract deploy but can be

changed on contract upgrade.

If these identifiers were to change, that would make all previously minted

payment or cancellation tokens unusable.

Recommendation

The auditor recommends to use the set_if_empty method of

payment_token_id and cancel_token_id storages in init method:

#[init]
fn init(&self, payment_token_id: TokenIdentifier, cancel_token_id:
TokenIdentifier, fee: u64) {
 self.payment_token_id().set_if_empty(&payment_token_id);
 self.cancel_token_id().set_if_empty(&cancel_token_id);
...

10

C6: Payment and Cancel token identifiers can take invalid values

Severity: Minor Status: Fixed

Location

src/pulsar_payment.rs
init

Description

In init method, nothing prevents to pass token identifiers in an incorrect

format (e.g. “ABC”) to payment_token_id and cancel_token_id parameters.

If incorrectly formatted token identifiers were to be passed, users would not be

able to create payments.

Recommendation

The auditor recommends to use is_valid_esdt_identifier from

TokenIdentifier to check whether payment and cancel token identifiers are in

the correct format.

#[init]
fn init(&self, payment_token_id: TokenIdentifier, cancel_token_id:
TokenIdentifier, fee: u64) {
 require!(payment_token_id.is_valid_esdt_identifier(), "Wrong
format for payment token id");
 require!(cancel_token_id.is_valid_esdt_identifier(), "Wrong
format for cancel token id");
...

11

C7: Fee value can exceed the maximum tolerated

Severity: Minor Status: Fixed

Location

src/pulsar_payment.rs
set_fee

Description

amount_post_tax is computed with this formula:

release_request.amount.clone() * (BigUint::from(1000u64 -
self.fee().get())) / BigUint::from(1000u64);

Currently, there is no constraint on the value stored in fee storage. It could be

higher than 1000, which would make the creation of payment fail, or higher

than 100 (10%), the maximum value tolerated for the fee.

Recommendation

The auditor recommends to introduce a set_fee method that would check the

correctness of the fee. This method would be used in init :

#[init]
fn init(&self, payment_token_id: TokenIdentifier, cancel_token_id:
TokenIdentifier, fee: u64) {
self.payment_token_id().set(&payment_token_id);
 self.cancel_token_id().set(&cancel_token_id);
 self.set_fee(fee);
}

fn set_fee(&self, fee: u64) {
 require!(fee <= 100, "Fee out of range. Must be between 0 (no
fee) and 100 (10%)");
 self.fee().set(fee);
}

12

C8: Unnecessarily complex logic to get token attributes

Severity: Minor Status: Fixed

Location

src/pulsar_payment.rs
decode_token_attributes

Description

The decode_token_attributes function uses an unnecessarily complex logic to

get token attributes as there is already a get_token_attributes built-in

method in the MultiversX Rust smart contract framework.

Recommendation

Using the get_token_attributes built-in method:

self.blockchain().get_token_attributes::<Release>(token_id,
token_nonce)

13

C9: Duplication of the fee denominator value

Severity: Minor Status: Fixed

Location

src/pulsar_payment.rs
create

Description

The fee denominator value (1000) used to compute tax is duplicated:

let amount_post_tax = release_request.amount.clone() *
(BigUint::from(1000u64 - self.fee().get())) /
BigUint::from(1000u64);

This could lead to errors if it were to be updated in one part of the formula but

not in the other part.

Recommendation

The auditor recommends to first introduce a constant FEE_DENOMINATOR and to

use it in the formula:

const FEE_DENOMINATOR: u64 = 1_000u64;

...

let amount_post_tax = release_request.amount.clone() *
(BigUint::from(FEE_DENOMINATOR - self.fee().get())) /
BigUint::from(FEE_DENOMINATOR);

14

Test issues & Recommendations

T1: Mandos tests fail

Severity: Minor Status: Fixed

Location

src/scenarios/*.json

Description

The path to the wasm file is wrong in some mandos tests: it is

file:../output/pulsar-payment-contract.wasm instead of

file:../output/pulsar-contract.wasm .

Because of this, 59 failed tests are currently failing.

Recommendation

Update contractCode attribute from file:../output/pulsar-payment-
contract.wasm to file:../output/pulsar-contract.wasm in each failed test.

15

Disclaimer

The security audit report makes no statements or warranties, either expressed

or implied, regarding the security of the code, the information herein or its

usage. It also cannot be considered as a sufficient assessment regarding the

utility and safety of the code, bugfree status or any other statements of the

contract.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

