
1

Security Audit Report

Gnogen gng-minting
smart contract

by
on May 12, 2023

2

Table of Content

Audit Summary 3

Code issues & Recommendations 4

C1: Users can’t withdraw and claim if battle can’t finish 4

C2: No guarantee that rewards can be claimed 6

C3: Changing NFT internal attributes can prevent some withdrawals 8

C4: Users who participated in battle with 0 power can’t withdraw 9

C5: Can’t run battles if operator rewards are 0 10

C6: User can have infinite power without staking 11

C7: Changing total rewards leads unexpected rewards for past battles 12

C8: State activation in init can have unexpected consequences 13

C9: No protection against past first_battle_timestamp 14

C10: No protection against SFT deposits 15

C11: Unnecessary reward calculations and constant DIVISION_PRECISION 16

C12: The zero address unexpectedly owns all withdrawn NFTs 17

C13: Misleading name daily_reward_amount 18

Disclaimer 19

3

Audit Summary

Scope of initial review

Repository: https://github.com/horizonnlabs/sc-gnogen-gng-minting-rs

Commit: 0ffba0ef91e8a8186fe34dbd4ef0a9819605d58c
Path to Smart contract: ./

Scope of final review

Repository: https://github.com/horizonnlabs/sc-gnogen-gng-minting-rs

Commit: 97ed8f71de13a3362acf90f264ada24bd49a83f1
Path to Smart contract: ./

Report objectives

1. Reporting all issues in smart contract code alongside recommendations

2. Reporting all issues in smart contract test alongside recommendations

3. Reporting all other issues alongside recommendations

Issues

Number of issues reported in the initial review and remaining in the final review:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 0 0 0 0 0 0

Major 3 0 0 0 0 0

Medium 5 0 0 0 0 0

Minor 5 0 0 0 0 0

https://github.com/horizonnlabs/sc-gnogen-gng-minting-rs
https://github.com/horizonnlabs/sc-gnogen-gng-minting-rs

4

Code issues & Recommendations

C1: Users can’t withdraw and claim if battle can’t finish

Severity: Major Status: Fixed

Description

Users can’t withdraw their NFTs if the smart contract is in Battle status. The

smart contract might not exit this status if admins don't provide enough

rewards for battles to finish (see e.g. No guarantee that rewards can be

claimed) or if the battle endpoint fails (see e.g. Users who participated in

battle with 0 power can’t withdraw).

Moreover, even if no such issue happens, the user would still have to run all the

clashes if he really wants to withdraw and could pay a significant amount of

gas for it. Users should be able to withdraw their NFTs in any circumstance,

without assuming the proper behaviour of admins or having to execute

additional transactions.

Recommendation

We recommend deleting the requirement that the smart contract status is

Preparation from the endpoints withdraw and claim .

Because the list of NFTs battle_stack does not have fixed length anymore

while the smart contract is in Battle status, we make a few modifications.

We remove the storage unique_id_battle_stack . Instead, we add a storage

remaining_nfts_in_battle -> u32 , which indicates that the NFTs of

battle_stack that should still fight each other in the current battle are those

with indices in [1, remaining_nfts_in_battle] . More precisely:

When a battle starts, remaining_nfts_in_battle is initialised to

battle_stack.len() .

In get_and_remove_token_from_stack , we sample the NFT index in [1,
remaining_nfts_in_battle] . Then, we permute the NFT in battle_stack
with the NFT at index remaining_nfts_in_battle . This can be done using

5

the method swap_indexes of UnorderedSetMapper . Finally, we decrement

remaining_nfts_in_battle by 1.

In withdraw , before removing an NFT from battle_stack , we get its index

battle_stack(nft).get_index() . We then consider two cases:

If the NFT index is greater than remaining_nfts_in_battle , we do nothing.

Else, we permute the NFT in battle_stack with the NFT at index

remaining_nfts_in_battle , and decrease remaining_nfts_in_battle by 1.

Finally, to calculate the operator’s rewards in

calculate_clash_operator_rewards , we add a storage

total_number_clashes_current_battle -> u32 , which is set to

battle_stack.len() / 2 when a battle starts.

We also recommend adding a test witnessing that this mechanism allows a

user to withdraw even while a battle is ongoing.

6

C2: No guarantee that rewards can be claimed

Severity: Major Status: Fixed

Description

When a new battle starts, there is no guarantee that rewards deposited by

admins are sufficient for users and clash operators to claim.

In addition, if there are not enough rewards in the smart contract for users to

claim, then users won’t be able to withdraw their NFTs (see Users can’t

withdraw and claim if battle can’t finish).

Recommendation

We recommend to add a condition that a new battle can start only if

reward_capacity is sufficient for rewarding both users and clash operators for

this battle. More precisely, we would have the following changes:

Adding a new storage total_rewards_for_stakers(battle_id: u64) ->
BigUint which is set to get_daily_reward_amount_with_halving when a

new battle starts. This is the total amount of rewards to be distributed for

users in a single battle.

Adding a new storage total_rewards_for_clash_operators(battle_id:
u64) -> BigUint which is set to daily_battle_operator_reward_amount
when a new battle starts. This is the total amount of rewards to be

distributed for clash operators in a single battle.

Then, when a new battle starts, battle subtracts

total_rewards_for_stakers(battle_id) +
total_rewards_for_clash_operators(battle_id) from reward_capacity . In

particular this would fail if reward_capacity is too small, indicating that

rewards in the smart contract are insufficient. The only other location where

reward_capacity should be used is in deposit_gng where it is increased when

admins deposit rewards. We should remove other occurrences of

reward_capacity (e.g. in claim_rewards or in the run_while_it_has_gas loop

of battle).

7

Finally, we use total_rewards_for_stakers(battle_id) to compute users

rewards for a specific battle. Similarly, we use

total_rewards_for_clash_operators(battle_id) to compute clash operators

rewards for a specific battle.

8

C3: Changing NFT internal attributes can prevent some withdrawals

Severity: Major Status: Fixed

Location

src/config.rs
set_attributes

Description

The owner endpoint set_attributes changes the internal attributes of a

specific NFT. This can prevent users to withdraw their NFTs.

Example:

Alice stakes an NFT with power 10. Her power is 10.

The owner increases the power of that NFT to 16.

Alice tries to withdraw her NFT, which fails when trying to decrease Alice’s

power by 16 since it would lead to a negative value.

Recommendation

We recommend removing the power field from UserStats , as it is not used by

the smart contract. The user’s total power can be computed directly in the

front-end.

Alternatively, if it is desirable to keep this storage, we can add the following in

set_attributes in case nft_owner(token_id, nonce) contains a non-empty

user address:

We get the current power of the NFT: get_token_attributes(token_id,
nonce).power .

We remove that power from the total power of the user.

We set the new attributes.

We add the new power of the NFT to the total power of the user.

9

C4: Users who participated in battle with 0 power can’t withdraw

Severity: Medium Status: Fixed

Location

src/lib.rs
calculate_clash_rewards

Description

calculate_clash_rewards fails because of a division by 0 in case the total

users power for a specific battle_id is 0. Therefore users whose NFTs were in

that battle will never be able to withdraw or claim.

Example: Assume that a battle battle_id contains 10 NFTs, 5 with power 0 are

fighting 5 other NFTs with non-zero power. The battle happens on a Sunday,

so the 5 NFTs with power 0 win all the clashes and the total users power for

the battle is 0. Therefore calculate_clash_rewards fails each time it is called

for this specific battle battle_id , and consequently:

Each winner of battle_id will never be able to withdraw any of his NFTs.

Each winner of battle_id will never be able to claim rewards.

All subsequent battles fail each time a clash is won by one winner of

battle_id , preventing all users to earn rewards for these battles.

Moreover, as long as the smart contract can’t exit the Battle status, users

can’t withdraw their NFTs or claim rewards (see Users can’t withdraw and

claim if battle can’t finish).

Recommendation

We suggest that calculate_clash_rewards returns 0 if the total users power

corresponding to battle_id is 0.

10

C5: Can’t run battles if operator rewards are 0

Severity: Medium Status: Fixed

Location

src/lib.rs
battle

Description

If daily_battle_operator_reward_amount is 0, users are still incentivised to run

the battle endpoint to earn rewards from clashes. However, battle will fail

when calling direct_esdt with an amount of 0 ESDT. Therefore, the battle

can’t terminate and users will not be able to earn rewards from clashes.

Moreover, the smart contract can’t exit the Battle status and consequently

users can’t withdraw their NFTs or claim rewards (see Users can’t withdraw

and claim if battle can’t finish).

Recommendation

In battle , we recommend to send rewards to the caller only if they are non-

zero.

11

C6: User can have infinite power without staking

Severity: Medium Status: Fixed

Location

src/lib.rs

Description

stake and withdraw modify the total power of the user based on the NFTs

staked or withdrawn. This is done by incrementing a variable total_power:
u16 , which for large quantities of NFTs can lead to overflow. This can be

exploited by a user to make his total power much bigger than other users.

Example: Alice has enough NFTs to reach a total power of u16::MAX + 1 =
65536 .

Alice calls stake several times to stake all her NFTs. Her total power is

65536 .

Alice withdraws all her NFTs at once, which due to u16 overflow reduces

her power by 0. So her total power remains 65536 .

Alice repeats the previous steps an arbitrary number of times to make her

total power much higher than other users.

Recommendation

As recommended in Changing NFT internal attributes can prevent some

withdrawals, We suggest removing the power field from UserStats because it

is not used in the smart contract.

Alternatively, if it is desirable to keep this storage, we recommend that

total_power in stake and withdraw has type u64 to prevent the overflow.

12

C7: Changing total rewards leads unexpected rewards for past

battles

Severity: Medium Status: Fixed

Location

src/config.rs
set_daily_reward_amount

Description

If the owner changes the total user rewards for one battle, this can make users

who did not yet claim for past battles to earn less rewards than expected.

Example: Assume that the total user rewards for one battle are 2000 GNG.

Alice and Bob both stake 1 NFT with the same power.

There are 4 NFTs involved in the 1st battle. The NFTs of Alice and Bob both

win their respective clashes.

Alice claims and earns 1000 GNG.

The owner calls set_daily_reward_amount and sets the total user rewards

for one battle to 200 GNG.

Bob claims and earns 100 GNG.

To sum up, Bob won 10x less rewards than Alice although he expected to earn

the same amount.

Recommendation

We recommend adding a new storage total_rewards_for_stakers(battle_id:
u64) -> BigUint which is set to get_daily_reward_amount_with_halving
when a new battle starts (see No guarantee that rewards can be claimed).

Then, calculate_clash_rewards(battle_id) can calculate a user’s rewards for

a specific battle based on total_rewards_for_battle(battle_id) instead of

daily_reward_amount .

13

C8: State activation in init can have unexpected consequences

Severity: Medium Status: Fixed

Location

src/lib.rs
init

Description

init sets the state of the smart contract to State::Active by default, which

can be unexpected and unwanted. For instance, at a smart contract upgrade, if

the proper functioning of the smart contract first requires the owner to call

some #[owner] endpoints, then user interactions should no be allowed in the

meantime.

Recommendation

We suggest not to set the state in init , and instead to let the owner explicitly

call the pause and resume endpoints to change the state.

14

C9: No protection against past first_battle_timestamp

Severity: Minor Status: Fixed

Location

src/lib.rs
init

Description

first_battle_timestamp is set once at deployment and can’t be modified later

on. If by mistake it is set to a e.g. 30 days in the past, then users won’t be able

to stake before we perform the last 30 battles with no participants.

Recommendation

We suggest checking that first_battle_timestamp is bigger than

current_timestamp .

15

C10: No protection against SFT deposits

Severity: Minor Status: Fixed

Location

src/lib.rs
stake

Description

Even if the owner doesn’t intend to authorise SFTs in smart contract, it is safer

to explicitly protect the smart contract of such an event. This is because if an

SFT collection is authorised, then users who stake multiple SFTs with the same

nonce would not be able to withdraw.

Recommendation

We recommend to make stake fail if nft_owner(token_id, nonce) is non-

empty and contains an address distinct from the zero address.

16

C11: Unnecessary reward calculations and constant

DIVISION_PRECISION

Severity: Minor Status: Fixed

Location

src/lib.rs

Description

To perform rewards calculations, calculate_clash_rewards and

calculate_clash_operator_rewards use a constant DIVISION_PRECISION =
1000000 and perform the calculation

power.mul(DIVISION_PRECISION).div(total_power).mul(rewards).div(DIVISI
ON_PRECISION) .

However simply doing power * rewards / total_power gives a more accurate

result and removes the need of DIVISION_PRECISION .

Recommendation

We suggest using the calculation power * rewards / total_power and

removing the constant DIVISION_PRECISION .

17

C12: The zero address unexpectedly owns all withdrawn NFTs

Severity: Minor Status: Fixed

Location

src/lib.rs
withdraw

Description

When a user withdraws an NFT, no one should hold this NFT in the smart

contract anymore. However, the storage nft_owner(token_id, nonce) is set to

ManagedAddress::zero() , indicating that a valid address on the blockchain is

the owner of that NFT.

Recommendation

We suggest to clear the storage nft_owner(token_id, nonce) instead of

setting it to the zero address.

18

C13: Misleading name daily_reward_amount

Severity: Minor Status: Fixed

Location

src/config.rs

Description

The storage daily_reward_amount and method

get_daily_reward_amount_with_halving refer to the rewards for one battle,

and give a false impression that a battle lasts one day although it can have

arbitrary duration, e.g. it can last 5 minutes or 2 months.

Recommendation

We suggest changing the names, e.g. to battle_rewards_amount and

get_battle_reward_amount_with_halving .

19

Disclaimer

The security audit report makes no statements or warranties, either expressed

or implied, regarding the security of the code, the information herein or its

usage. It also cannot be considered as a sufficient assessment regarding the

utility and safety of the code, bugfree status or any other statements of the

contract.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

