
1

Security Audit Report

CoinDrip streaming
smart contract

by
on February 10, 2023

2

Table of Content

Audit Summary 3

Code issues & Recommendations 4

C1: cancel_stream fails if recipient is a non-payable smart contract 4

C2: Recipient can receive less than expected 6

C3: recipient_balance returns wrong amount 8

C4: Useless method balance_of 9

C5: Unnecessary restriction to fungible tokens 10

C6: Unused global constants 11

C7: No sanity check in recipient_balance 12

Test issues & Recommendations 13

T1: No test for verifying recipient receives the right amount at any time 13

Disclaimer 14

3

Audit Summary

Scope

Repository: https://github.com/CoinDrip-finance/coindrip-protocol-sc

Commit: 97f8cb7be15da79f157a79e5daa97e64a81d7273

Path to Smart contract: ./

Report objectives

1. Reporting all issues in smart contract code alongside recommendations

2. Reporting all issues in smart contract test alongside recommendations

3. Reporting all other issues alongside recommendations

Issues

Number of issues reported and issues remaining at last reviewed commit

3934e6e837e94cfa143c18fd6292fbe982f976cf:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 0 0 0 0 0 0

Major 0 0 0 0 0 0

Medium 3 1 0 0 0 0

Minor 4 0 0 0 0 0

https://github.com/CoinDrip-finance/coindrip-protocol-sc

4

Code issues & Recommendations

C1: cancel_stream fails if recipient is a non-payable smart contract

Severity: Medium Status: Fixed

Location

src/coindrip-protocol.rs
cancel_stream

Description

If a sender wants to cancel a stream, but the recipient is a non-payable smart

contract, the cancel_stream method will fail because the token transfer will fail

(as detailed in MultiversX documentation). Therefore the sender’s funds will be

stuck in CoinDrip’s smart contract.

Recommendation

We suggest a modified procedure for cancelling streams, which consists in the

following:

In the struct Stream , a new field balances_after_cancel:

Option<BalancesAfterCancel> , where the struct BalancesAfterCancel has

2 BigUint fields: sender_balance and recipient_balance .

An endpoint cancel_stream , which takes a stream_id as argument.

An endpoint claim_from_stream_after_cancel , which takes a stream_id

as argument.

The cancel_stream method is the same as the current one, except that it does

not send sender_balance and recipient_balance to the sender and the

recipient. Instead, it stores these 2 quantities in the stream’s field

balances_after_cancel .

Once a stream is cancelled, its field balances_after_cancel is not None

anymore. In this case, the methods claim_from_stream and cancel_stream

should fail.

https://arda-webtools.vercel.app/1e45d137eae643aaac192a559f70d868

5

Then, when the sender calls claim_cancelled_stream , he receives the amount

given in the field sender_balance of balances_after_cancel , and this field is

then set to 0. Similarly when the recipient calls claim_cancelled_stream .

At the end of claim_cancelled_stream , if both sender_balance and

recipient_balance equal 0, then the stream is removed from storage.

Note: A possible optimisation is to execute claim_cancelled_stream at the end

of cancel_stream to allow for the caller to receive his funds immediately.

6

C2: Recipient can receive less than expected

Severity: Medium Status: Fixed

Location

src/coindrip-protocol.rs
recipient_balance

Description

When the recipient claims, the amount of tokens he receives depends on the

times at which he previously claimed. This can lead to an unexpected and

underestimated amount for the recipient.

Example: Consider a token with 0 decimals. The sender Alice creates a stream

of 3 tokens for the recipient Bob. The stream starts at the beginning of week 1

and should be claimed over 3 weeks. If Bob claims at the beginning of every

week, he will receive 1 token each time as expected. For instance:

When Bob claims at the beginning of week 3, he will have received a total of

2 tokens.

However, if Bob first claims at the end of week 2, he receives 1 token, and the

stream is then reset: the 2 remaining tokens will be distributed over week 3,

and the next time Bob can receive 1 extra token will be at the middle of week 3.

In particular:

When Bob claims at the beginning of week 3, he receives no extra token.

Thus, he will have received a total of 1 token while he would have expected

to have received a total of 2 tokens.

No matter the times at which Bob previously claimed, he should expect to have

received the same total amount of tokens.

Recommendation

We suggest to remove the field remaining_amount of the struct Stream , and

instead to record the amount already claimed by the recipient

total_claimed_amount . Then, we can modify the way recipient_balance

computes the amount amount_to_claim that can be claimed by the recipient

as follows:

7

1. Compute the total amount the recipient should have claimed at the current

time: total_received_after_claim = min(deposit * (current_time -

start_time) / (end_time - start_time), deposit) .

2. Let amount_to_claim = total_received_after_claim -

total_claimed_amount .

3. Increase total_claimed_amount += amount_to_claim .

4. Return amount_to_claim .

8

C3: recipient_balance returns wrong amount

Severity: Medium Status: Fixed

Location

src/coindrip-protocol.rs
balance_of

Description

Due to rounding imprecisions, the method recipient_balance underestimates

the amount of tokens that the recipient can claim. Therefore,

recipient_balance can’t be completely trusted by other endpoints like

sender_balance and balance_of . This, in turn, forces balance_of to

implement additional logic to make sure that the recipient will receive the

entirety of the sender’s deposit at the end of the stream.

If the recommendation suggested in Recipient can receive less than expected

is implemented, recipient_balance would return the accurate amount of

tokens that the recipient can claim. Then, sender_balance and balance_of

could safely rely on recipient_balance and do not need to introduce extra

logic.

Recommendation

If the recommendation suggested in Recipient can receive less than expected

is implemented, the methods sender_balance and balance_of could then

safely rely on recipient_balance and we can remove the extra logic in

balance_of .

Otherwise, we suggest computing the accurate amount of tokens that the

recipient can claim directly in recipient_balance . Then, sender_balance and

balance_of could safely rely on recipient_balance and we can remove the

extra logic in balance_of .

9

C4: Useless method balance_of

Severity: Minor Status: Fixed

Location

src/coindrip-protocol.rs
balance_of

Description

The method balance_of to compute the balances of the recipient or the

sender is not needed, since the methods recipient_balance and

sender_balance are capable of returning these amounts already.

Recommendation

Following the recommendation of recipient_balance returns wrong amount, we

can ensure that the methods recipient_balance and sender_balance return

the correct balances for the recipient and sender. Therefore, we can remove

the method balance_of (and its occurrences), and use these two methods

directly.

10

C5: Unnecessary restriction to fungible tokens

Severity: Minor Status: Fixed

Location

src/coindrip-protocol.rs
create_stream

Description

In create_stream , the requirement that the token nonce is 0 is not necessary

and prevents streams of meta-ESDTs like xExchange farm tokens and

metastaking tokens.

Recommendation

We suggest to remove the requirement require!(token_nonce == 0,

ERR_STREAM_ONLY_FUNGIBLE) from the create_stream method, and to allow any

type of token.

11

C6: Unused global constants

Severity: Minor Status: Fixed

Location

src/errors.rs

Description

The constants ERR_CLAIM_TOO_BIG and ERR_NO_STREAM are never used.

Recommendation

We suggest to remove them.

12

C7: No sanity check in recipient_balance

Severity: Minor Status: Fixed

Location

src/coindrip-protocol.rs
recipient_balance

Description

The amount of tokens amount that the recipient can claim should never exceed

the remaining balance remaining_balance in the stream, otherwise the

recipient could receive tokens which belong to other users.

Although the overall logic of the smart contract does not currently allow for

situations in which amount > remaining_balance , there is no explicit

requirement that amount <= remaining_balance , which would provide a

reliable extra protection in case of unanticipated scenarios, for example if

future modifications of the smart contract introduce calculation errors and

situations in which amount > remaining_balance .

This protection would already be implemented if the recommendation

suggested in Recipient can receive less than expected is followed, as then the

min function is used to ensure that the total amount claimed by the recipient

never exceeds the sender’s deposit.

Recommendation

If the recommendation suggested in Recipient can receive less than expected

is implemented, nothing should be done.

Otherwise, in recipient_balance , we suggest adding an explicit requirement

that the recipient balance is less or equal than remaining_balance .

13

Test issues & Recommendations

T1: No test for verifying recipient receives the right amount at any

time

Severity: Medium Status: Fixed

Location

tests/coindrip_protocol_test.rs

Description

Depending on the precise timestamp when the recipient claims tokens, some

rounding imprecisions may occur in the amount he receives.

The existing tests already cover scenarios where the recipient claims tokens,

but at particularly convenient timestamps where the rounding imprecisions do

not occur. There is no test making sure that the recipient receives the right

amount at arbitrary timestamps, no matter the rounding imprecisions.

Recommendation

Add a test where rounding imprecisions occur:

1. The sender creates a stream with an amount of 2 atoms (for instance, if the
token has 3 decimals, an amount of 2 atoms equals 0.002 tokens).

2. The recipient claims before half the stream period, and should receive

nothing.

3. The recipient claims after half the stream period, and should receive 1 atom.

4. The recipient claims at the end of the streaming period, and should receive

1 atom.

14

Disclaimer

The security audit report makes no statements or warranties, either expressed

or implied, regarding the security of the code, the information herein or its

usage. It also cannot be considered as a sufficient assessment regarding the

utility and safety of the code, bugfree status or any other statements of the

contract.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

