
1

Security Audit Report

AngryPenguins
customization
smart contract

by
on November 17, 2022

2

Table of Content

Audit Summary 3

Code issues & Recommendations 4

C1: Long NFT attributes wrongly top encoded 4

C2: No validation of NFT attributes 5

C3: Unnecessary dual storages for slots and items 6

C4: Imprecise condition on balance for unequipping 7

C5: Two different storages have the same identifier 8

C6: Equipments can’t be refilled 9

C7: Overly complex Kvp type 10

C8: Scattered and unnecessary normalization of NFT attributes 11

C9: Server can change the CID of already rendered images 12

C10: Inadequate VecMapper for __images_to_render 13

C11: Useless sc_panic_self 14

C12: Confusing method names 15

C13: sc_print!(…) present 16

C14: Changing ipfs_gateway invalidates all image urls 17

C15: Unnecessary normalization of gateway 18

C16: Unnecessary get_equippable_name function 19

C17: Unnecessary intermediate functions 20

C18: Unnecessary custom top_encode / top_decode for Item 21

C19: Useless ownership checks 22

C20: Useless equippable_name_format logic 23

C21: Useless utils 24

C22: Useless ItemAttributes struct 25

C23: Useless EquippableNftAttributes methods 26

C24: Unnecessary intermediate files 27

Disclaimer 28

3

Audit Summary

Scope

Repository: https://github.com/Angry-Penguins-Colony/sc-customize-nft

Commit: 82c929815e6886e6785f1d16baaaee3176e75771

Path to Smart contract: ./

Report objectives

1. Reporting all issues in smart contract code alongside recommendations

2. Reporting all issues in smart contract test alongside recommendations

3. Reporting all other issues alongside recommendations

Issues

Number of issues reported and issues remaining at last reviewed commit

7bcdfe601b08456a46aaffd63006faae96ca55a0:

Severity
Reported Remaining

Code Test Other Code Test Other

Critical 0 0 0 0 0 0

Major 2 0 0 0 0 0

Medium 10 0 0 0 0 0

Minor 12 0 0 0 0 0

https://github.com/Angry-Penguins-Colony/sc-customize-nft

4

Code issues & Recommendations

C1: Long NFT attributes wrongly top encoded

Severity: Major Status: Fixed

Location

src/structs/equippable_nft_attributes.rs

Description

If NFT attributes top-encode into more that 512 bytes, only the first 512 bytes

will be kept in the top-encoding.

Recommendation

Use the load_512_bytes method in the top_encode method of

EquippableNftAttributes .

5

C2: No validation of NFT attributes

Severity: Major Status: Fixed

Description

The slot and name of NFT attributes can currently be any ManagedBuffer.

However, there are values that the slot and name should be forbidden to take,

otherwise critical issues would appear. Exhaustively:

The slot should not contain any “:” or “;”. Otherwise the top decoding would

not work as expected.

The name should not contain any “:” or “;” or be equal to “unequipped”.

Otherwise the top decoding would not work as expected and items with the

name “unequipped” will be lost.

Recommendation

The __set_item_no_check , set_slot_of , __get_index methods should verify

that the slot doesn’t contain any “:” or “;”. Any other method that stores a slot

should do the same checks.

The __set_item_no_check method should verify that the name doesn’t contain

any “:” or “;” or is equal to “unequipped”. Any other method that stores a name

should do the same checks.

The value b"unequipped" should be stored in a constant to ensure the same

value is used everywhere.

6

C3: Unnecessary dual storages for slots and items

Severity: Medium Status: Fixed

Description

Currently the smart contract has:

a storage token_of that associates to a couple (slot, name) a couple

(token_id, token_nonce)

a storage __slot_of that associates to a token_id a slot

a method register_item that fills the storage slot_of

a method fill that fills the storage token_of

Because of the presence of these two storages, the customize method has to:

1. verify that the token_id of an equipment has a slot associated

2. create the item associated to the equipement

3. verify that the item just created has a token associated

4. verify that the token associated matches the token that has been sent

The customize method has a lot to do and verify and it can be easy to forget

something important.

Recommendation

A simpler model would be to only have a token_of storage:

the register_item method would take as parameter an item and receive a

token and then fill the storage token_of after having verifying the item is

not already present,

the fill method would take as parameter an item and receive a token and

then verifies the token received matches the token associated to the item,

the customize method would receive the token of the penguin and of the

equipments and would take as parameter a EquippableNftAttributes that

only contains the slots that changes. If the slot is None, then it is

unequipped; if the slot is Some<*>, then it is equipped.

7

C4: Imprecise condition on balance for unequipping

Severity: Medium Status: Fixed

Description

Currently, an equipment can only be removed from a penguin if the smart

contract holds at least twice this equipment. However, this constraint can be

loosened: the smart contract should only require to hold once the equipment.

Recommendation

Replacing this condition:

... <= BigUint::from(1u64)

by this condition:

... == 0

8

C5: Two different storages have the same identifier

Severity: Medium Status: Fixed

Description

The equippable_name_format and __images_to_render have the same storage

identifier that is equippable_name_format . This means that they both write to

the same location in storage.

Hopefully, in this precise situation, this is not too severe as the

equippable_name_format is never being written, but it could have been a

critical issue if other storages had the same identifier.

Recommendation

Changing the identifier of __images_to_render and verifying that all the

storages have correct identifiers.

9

C6: Equipments can’t be refilled

Severity: Medium Status: Fixed

Description

Let’s say that hats are added to the smart contract by calling the fill method.

If it appears later on that more hats need to be added, there is currently no

way to do it because calling the fill method will fail because of this require:

require!(
 self.token_of(item).is_empty(),
 "The item with name {} is already registered. Please, use another
name.",
 item_name
);

Recommendation

A possible solution would be to remove this require and in the case

self.token_of(item) is not empty, to verify that the token already associated

with item matches the token that have been sent.

10

C7: Overly complex Kvp type

Severity: Medium Status: Fixed

Description

Currently, Kvp struct is defined as below:

struct Kvp<M: ManagedTypeApi> {
 pub slot: ManagedBuffer<M>,
 pub item: Option<Item<M>>,
}

pub struct Item<M: ManagedTypeApi> {
 pub name: ManagedBuffer<M>,
 pub slot: ManagedBuffer<M>,
}

So Kvp contains twice the slot information, once in the slot field of Kvp and

once in the slot field of Item . This is unnecessary and because slot is

contained twice, checks have to be done in order to be sure both slot values

are equal.

Having twice the slot stored makes the data structure more difficult to

understand and forces to add additional checks to be sure the same slot is

stored twice.

Recommendation

Simplifying the Kvp struct this way:

struct Kvp<M: ManagedTypeApi> {
 pub slot: ManagedBuffer<M>,
 pub name: Option<ManagedBuffer<M>>,
}

11

C8: Scattered and unnecessary normalization of NFT attributes

Severity: Medium Status: Fixed

Description

The normalization of NFT attributes (i.e. the automatic convertion in the

correct format) is done in multiple different places in the smart contract: in

set_slot_of , in is_slot_empty , in __set_item_no_check , in top_decode , in

top_encode . With a scattered normalization, there are more chances that the

normalization is not going to be done correctly. Moreover, if someone adds a

new entry point, he should think about normalizing.

The normalization of attributes is also not necessary and should be avoided

because:

1. the caller might not expect the data he passes to be changed by the smart

contract on his behalf,

2. normalization can usually be done outside of the smart contract, hence

reducing the complexity of the smart contract.

The smart contract should rather validate data is correctly formatted.

Recommendation

The __set_item_no_check , set_slot_of and __get_index methods should be

the only places where there should be validation. They might also verify the

slot doesn’t contain spaces.

The utils to_lowercase and capitalize can be removed and replaced by a

validate_slot util.

The equals_ignore_case util could also be removed.

12

C9: Server can change the CID of already rendered images

Severity: Medium Status: Fixed

Description

The server that generates images is authorized to change the CID of already

rendered images. If the server gets compromised, the hacker would be able to

change the CID of all the already rendered images. This is a privilege the

server doesn’t need and so should not be granted.

Recommendation

In the set_cid_of method, the line self.__cid_of(&attributes).set(cid);

should be moved inside the if

self.__images_to_render().has_item(&attributes) { condition.

13

C10: Inadequate VecMapper for __images_to_render

Severity: Medium Status: Fixed

Description

A VecMapper is used for the __images_to_render storage. A VecMapper is not

made for easily checking if one item is in it or removing one of its items.

However, the smart contract needs to check if an image is already in the

rendering queue or remove an image from it. Therefore, in order to do so, a

consequent amount of custom logic has been added.

An UnorderedSetMapper would be better suited as it comes built-in with all the

things the smart contract needs, making useless all the custom logic that have

been added and can then be removed, thus the smart contract simpler and so

more secure.

Recommendation

To use an UnorderedSetMapper instead of a VecMapper for the

__images_to_render storage and to remove:

the implementation of PartialEq for EquippableNftAttributes

the file src/utils/managed_vec_utils.rs

the file src/utils/vec_mapper_utils.rs

14

C11: Useless sc_panic_self

Severity: Medium Status: Fixed

Location

src/utils/macros.rs

Description

It is crucial that smart contracts can stop the execution of a transaction

whenever anormal conditions occur. Inside an Elrond smart contract, the

instruction sc_panic can be used. Inside the method of a structure, this same

instruction can’t be used.

Therefore, a sc_panic_self instruction have been added to the codebase to

be able to panic inside the method of a structure. In the meantime, a

M::error_api_impl().signal_error instruction have been added to the Rust

framework for Elrond smart contracts.

As it is crucial that the smart contract successfully panics when needed, it is

safer to use the built-in instruction for this rather than an homemade one.

Recommendation

Use M::error_api_impl().signal_error instead of sc_panic_self and

remove the file src/utils/macros.rs .

15

C12: Confusing method names

Severity: Medium Status: Fixed

Description

The auditor has been confused by the name of several methods and feels their

names could be improved to better explicit the role of such methods, and

hence make the code easier to understand and less error prone.

Recommendation

The following list is not exhaustive and it might be beneficial if the programmer

could go through all the methods and ensure the ideal naming has been

chosen:

render_image is a confusing name as no rendering happens in the so-called

method. Rather it enqueues an image that will be later on rendered off-

chain. A better name might be add_image_to_render .

Kvp is not a very explicit name. A better one might be

EquippableNftAttribute . Moreover the field name might be better named

value .

The name set_item doesn’t explicit the fact the slot should be empty. A

better name might be set_item_if_empty .

__set_item_no_check should rather be set_item .

namings that end with _of such as token_of , __permissions_set_cid_of ,

__slot_of , … are a bit problematic as we don’t understand “of what?”. For

example, token_of could be renamed into token_of_item .

namings that start with __ such as __permissions_set_cid_of ,

__images_to_render , … should not start with __ as __ doesn’t say

anything on what the method is doing. __ is more of a hack for quickly

naming and usually warns of potential naming issues.

16

C13: sc_print!(…) present

Severity: Minor Status: Fixed

Description

A sc_print!(...) is present in mint_equippable and render_image methods.

It has no impact on the functioning of the smart contract but cluters the source

code. It should only be used during debugging.

Recommendation

Removing these sc_print!(...) .

17

C14: Changing ipfs_gateway invalidates all image urls

Severity: Minor Status: Fixed

Description

If the ipfs_gateway is changed, then the smart contract won’t be able to

remember url for all the images that have already been generated.

Recommendation

For each generated image, the entire URL should be stored rather than only

the CID. The ipfs_gateway storage can be removed.

18

C15: Unnecessary normalization of gateway

Severity: Minor Status: Fixed

Description

In the case issue Changing ipfs_gateway invalidates all image urls would not be

fixed, an other issue should be mentionned concerning the gateway that is

passed to init .

This URL is first normalized with

gateway.append_trailing_character_if_missing(b'/') and then stored in

storage.

Normalization (i.e. automatically converting in the correct format) should be

avoided as much as possible because:

1. the caller might not expect the data he passes to be changed by the smart

contract on his behalf,

2. normalization can usually be done outside of the smart contract, hence

reducing the complexity of the smart contract.

Normalization should usually be replaced by verification, i.e. instead of

automatically converting the data in the correct format, rather verifying the

data is already in the correct format.

Recommendation

Remove the append_trailing_character_if_missing utils and rather verify in

the init method that the last character of gateway is a slash.

19

C16: Unnecessary get_equippable_name function

Severity: Minor Status: Fixed

Description

The get_equippable_name function is not necessary as there is already a

get_token_name that could be used.

Recommendation

Remove the get_equippable_name function and use get_token_name instead.

In the fill method, use get_token_name function to get item_name .

20

C17: Unnecessary intermediate functions

Severity: Minor Status: Fixed

Description

Intermediate functions help making a big function to be smaller. This simplifies

the big function but makes it harder to fully understand it as somebody now

has to read the big function plus all the intermediate functions that will likely be

in a bunch of different files.

Hence intermediate functions are not always a good idea, especially when the

logic that they abstract is small. In this case, it is best to remove them.

The current source code of the smart contract contains several intermediate

functions that doesn’t abstract much and that would be best to remove.

Recommendation

Move the logic inside the following intermediate functions directly to the parent

function:

update_equippable

mint_equippable

calculate_hash

parse_equippable_attributes

enqueue_image_to_render

dequeue_image_to_render

to_kvp_buffer

empty_slot

21

C18: Unnecessary custom top_encode / top_decode for Item

Severity: Minor Status: Fixed

Description

The Item struct doesn’t need to have a custom top_encode / top_decode . Only

the EquippableNftAttributes struct needs to have a custom top_encode /

top_decode .

Recommendation

Moving the top_encode / top_decode logic of Item to the top_encode /

top_decode of EquippableNftAttributes .

22

C19: Useless ownership checks

Severity: Minor Status: Fixed

Description

The register_item , fill , claim methods already have a #[only_owner]

annotation but still check if the caller is the owner. This logic is useless.

Recommendation

Removing this check logic.

23

C20: Useless equippable_name_format logic

Severity: Minor Status: Fixed

Description

The logic around the concept of equippable_name_format is never used in the

smart contract.

Recommendation

Remove:

the equippable_name_format storage,

the EQUIPPABLE_NAME_FORMAT_NUMBER and ERR_INIT_MISSING_NUMBER_FORMAT

constants,

the get_next_equippable_name method,

the replace and contains utils in src/utils/managed_buffer_utils.rs ,

the to_ascii utils in src/utils/u64_utils.rs .

24

C21: Useless utils

Severity: Minor Status: Fixed

Description

Some utils are used nowhere while bloating the codebase and making it harder

to grasp.

Recommendation

Remove:

the to_hex utils in src/utils/u64_utils.rs ,

the split_last_occurence , remove_first_char ,

remove_first_and_last_char , hex_to_u64 , ascii_to_u64 utils in

src/utils/managed_buffer_utils.rs .

25

C22: Useless ItemAttributes struct

Severity: Minor Status: Fixed

Location

src/structs/item_attributes.rs

Description

The ItemAttributes struct in src/structs/item_attributes.rs is never used.

Recommendation

Remove the file src/structs/item_attributes.rs .

26

C23: Useless EquippableNftAttributes methods

Severity: Minor Status: Fixed

Description

The fmt , new and get_count methods of the EquippableNftAttributes

structure are never used.

Recommendation

Remove them.

27

C24: Unnecessary intermediate files

Severity: Minor Status: Fixed

Location

src/structs/equippable_nft_attributes.rs

Description

Intermediate files help making a big file to be smaller. This simplifies the big file

but makes it harder to fully understand it as somebody now has to read the big

file plus all the intermediate files that will likely be in a bunch of different

folders.

Hence intermediate files are not always a good idea, especially when the logic

that they abstract is small. In this case, it is best to remove them.

After all the previous issues are fixed, the source code of the smart contract

will contain several intermediate files that doesn’t abstract much and that

would be best to remove.

Recommendation

Currently there are 4 folders and 16 files in the src folder. After all the

previous issues are fixed, the auditor would advise the following structure:

a lib.rs file that would contain the logic of the current lib.rs and all the

files in the libs folder,

a structs.rs file that would contain the logic of all the files in the structs

folder,

a utils.rs file that would contain the logic of all the files in the utils

folder,

a contants.rs file that would contain the same logic as the current

constant.rs file.

28

Disclaimer

The security audit report makes no statements or warranties, either expressed

or implied, regarding the security of the code, the information herein or its

usage. It also cannot be considered as a sufficient assessment regarding the

utility and safety of the code, bugfree status or any other statements of the

contract.

This report does not constitute legal or investment advice. It is for informational

purposes only and is provided on an "as-is" basis. You acknowledge that any

use of this report and the information contained herein is at your own risk. The

authors of this report shall not be liable to you or any third parties for any acts

or omissions undertaken by you or any third parties based on the information

contained herein.

